

1 October 2012

NIEM Model Package
Description Specification
Version 1.1

URI: http://reference.niem.gov/niem/specification/model-package-description/1.1/

NIEM Model Package Description (MPD) Specification

ii

NIEM Model Package Description (MPD) Specification

iii

Change History

No. Date
Reference: All, Page,

Table, Figure, Paragraph

A = Add
M = Mod
D = Del

Revised
By

Change Description

1.0

1.1

8/8/2011

10/1/2012

All

All

A

M

NTAC

NTAC

Initial release

Revise Nature/Purpose lexicon (1.1);
delete IEM concept;
add new Wantlist Sec 4.2.5;
change wantlist cardinality to 0,U;
add Sec 3.5 Base Schema Set;
rename catalog to mpd-catalog;
expand catalog sample instance;

add new paragraph at end Sec 4.2.2
explaining metadata duplication:
correct several minor errors.

NIEM Model Package Description (MPD) Specification

iv

Contents

1 Introduction ... 1
1.1 Background ... 1
1.2 Purpose .. 2
1.3 Scope ... 3
1.4 Audience ... 3

2 Concepts and Terminology ... 4
2.1 Key Words for Requirement Levels ... 4

2.2 Character Case Sensitivity .. 4
2.3 Artifacts .. 4
2.4 Schema-Namespace Correspondence in NIEM .. 4
2.5 Harmonization .. 5

2.6 Validation .. 5
2.7 Reference Schema ... 5

2.8 Coherence of Schema Sets .. 6
2.9 MPD Types ... 8

2.9.1 NIEM Release ... 8

2.9.2 Domain Update ... 10
2.9.3 Core Update ... 11

2.9.4 Information Exchange Package Documentation (IEPD)................................... 11

2.9.5 Enterprise Information Exchange Model (EIEM) ... 12

2.10 Similarities and Differences of MPD Classes ... 14
3 MPD XML Schema Artifacts ... 15

3.1 Reference Schemas ... 16

3.2 Subset Schemas ... 17
3.2.1 Basic Subset Concepts .. 17

3.2.2 Subset Namespaces ... 18
3.2.3 Omitting Schemas in Subsets .. 19
3.2.4 Multiple Subsets in a Single IEPD or EIEM ... 19

3.3 Extension Schemas ... 20
3.4 Exchange Schemas ... 21
3.5 Base Schema Set ... 22

3.6 Constraint Schemas ... 23

3.7 Classes of MPDs vs. Classes of Schemas ... 24
3.8 Sample XML Instances ... 25

4 MPD Documentation Artifacts ... 26
4.1 Catalog .. 26
4.2 Metadata Concepts .. 27

4.2.1 Version Numbering Scheme ... 27
4.2.2 URI Scheme for MPDs ... 29
4.2.3 URI Scheme for MPD Artifacts .. 30

4.2.3.1 Compact URIs (CURIEs) .. 32
4.2.3.2 MPD Artifact URIs Are Not NIEM Namespaces 32

NIEM Model Package Description (MPD) Specification

v

4.2.4 Artifact Vocabularies: Nature and Purpose .. 33
4.2.5 Wantlists .. 36
4.2.6 MPD Artifact Lineage ... 37

4.3 Change Log ... 38

4.3.1 NIEM Releases, Core Updates, and Domain Updates 38
4.3.2 IEPDs and EIEMs ... 39

4.4 Master Document .. 40
4.4.1 Master Document Content .. 41

5 Optional MPD Artifacts .. 42

6 Directory Organization, Packaging, Other Criteria .. 43
6.1 MPD File Name Syntax .. 44
6.2 Artifact Links to Other Resources .. 46

6.3 Duplication of Artifacts .. 48
6.4 Non-normative Guidance for Directories ... 48

Appendix A: MPD Catalog Schema ... A-1
Appendix B: MPD Catalog Data Dictionary .. B-1

Appendix C: Sample MPD Catalog Instance .. C-1
Appendix D: Sample XSLT for an MPD Catalog Index .. D-7

Appendix E: Browser Display of MPD Catalog .. E-1
Appendix F: MPD Artifacts ... F-1
Appendix G: MPD Lexicon (Nature and Purpose) ... G-1

Appendix H: Rule Summary ... H-1

Appendix I: Acronyms and Abbreviations ... I-1
Appendix J: Glossary of Terms ... J-1
Appendix K: References ... K-1

Figures
Figure 2-1. Incoherent schema set - not closed.. 7

Figure 2-2. Incoherent schema set - incompatible data components. .. 7
Figure 2-3. Examples of NIEM numbered releases. .. 10
Figure 2-4. BIECs, EIEM, and a small family of IEPDs. .. 14

Figure 4-1. Example versioning system... 28

Figure 4-2. An example of IEPD representation (abbreviated). .. 36
Figure 6-1. IEPD sample directory structure. .. 50

Tables
Table 2-1. Comparison of MPD classes. ... 15
Table 3-1. MPD classes vs. schema classes ... 25

NIEM Model Package Description (MPD) Specification

1

1 Introduction

This specification assumes familiarity with the National Information Exchange Model (NIEM),

its basic concepts, architecture, processes, design rules, and general conformance rules. For

novices, the recommended reading list includes:

 Introduction to the National Information Exchange Model [NIEM-Intro]

 NIEM Concept of Operations [NIEM-ConOps]

 NIEM Naming and Design Rules [NIEM-NDR]

 NIEM High-Level Version Architecture [NIEM-HLVA]

 NIEM High-Level Tool Architecture [NIEM-HLTA]

 NIEM Conformance [NIEM-Conformance]

 NIEM User Guide [NIEM-UserGuide]

 NIEM Business Information Exchange Components (BIEC) [NIEM-BIEC]

 NIEM Implementation Guidelines [NIEM-Implementation]

The foregoing NIEM documents are available at http://reference.niem.gov/niem/. See [NIEM-

Implementation] for NIEM Implementation Guidelines.

Those knowledgeable of NIEM should be familiar with the [NIEM-NDR], [NIEM-HLVA],

[NIEM-Conformance], and [NIEM-BIEC].

This specification uses and is a peer to the NIEM Naming and Design Rules (NDR) [NIEM-

NDR] and supe rsedes IEPD guidance previously published in Requirements for a NIEM IEPD

[NIEM-IEPD] and the NIEM User Guide [NIEM-UserGuide]. The NIEM User Guide remains

a good source for understanding the process of building Information Exchange Package

Documentation (IEPD).

1.1 Background

Many fundamental concepts, processes, and products in the NIEM generally involve aggregating

electronic files into logical sets that serve a specific purpose. Examples of such sets include, but

in the future may not necessarily be limited to, a NIEM release, domain update, Information

Exchange Package Documentation (IEPD), and Enterprise Information Exchange Model

(EIEM). Each of these examples is a NIEM Model Package Description (MPD).

Definition: Model Package Description (MPD) – A set of related W3C XML

Schema documents and other supporting files organized as one of the five classes

of NIEM schema sets:

 • Release (major, minor, or micro).

 • Domain update (to a release).

 • Core update (to a release).

http://reference.niem.gov/niem/

NIEM Model Package Description (MPD) Specification

2

 • Information Exchange Package Documentation (IEPD).

 • Enterprise Information Exchange Model (EIEM).

An MPD is self-documenting and provides sufficient normative and non-

normative information to allow technical personnel to understand how to use or

implement it. An MPD is packaged as a ZIP [PK-ZIP] file.

A key NIEM concept used throughout this specification is data component.

Definition: data component – An XML Schema type or attribute group

definition; or an XML Schema element or attribute declaration.

An MPD is a normative specification for XML data components in the format of World Wide

Web Consortium (W3C) XML Schema definition language [W3-XML-SchemaDatatypes]

[W3-XML-SchemaStructures]. MPD schema documents either (1) define the semantics and

structure for NIEM reusable data components, or (2) define implementable NIEM exchange

document instances inW3C Extensible Markup Language (XML) [W3-XML].

A NIEM MPD is complete when it has been properly packaged with the schemas,

documentation, and supplemental files needed to understand how to use and implement it. MPD

content design, development, and assembly may be difficult and time-consuming, especially if

done manually. Software tools have been shown to significantly reduce the complexity of

designing, constructing, changing, and managing MPDs. In order to reduce ambiguity and to

facilitate interoperable and effective tool support, this baseline specification imposes some

degree of consistency on the terminology, syntax, semantics, and composition of MPDs.

1.2 Purpose

This document is a normative specification for the various kinds of NIEM MPDs. The rules and

guidance herein are designed to encourage and facilitate NIEM use and tools by balancing

consistency, simplicity, and flexibility. Consistency and simplicity make MPDs easy to design

correctly, build rapidly, and find easily (for reuse or adaptation). Consistency also facilitates tool

support. Flexibility enables more latitude to design and tailor MPDs for complex data exchange

requirements. As such, this document does not necessarily prescribe mandates or rules for all

possible situations or organizational needs. So, if an organization determines it should impose

additional constraints or requirements on its IEPDs beyond those specified in this document (for

example, requiring some normative form of business requirements or a domain model within

IEPD documentation), then it is free to do so, as long as there are no conflicts with this MPD

Specification or the [NIEM-NDR].

This document defines terminology; identifies required and optional artifacts and metadata in

MPDs; specifies normative rules, schemes, and syntax; provides non-normative guidance; and as

needed, refers to other related NIEM specifications for more detail.

NIEM Model Package Description (MPD) Specification

3

1.3 Scope

This specification applies to information exchange definitions and release products that employ

the data component definitions and declarations in NIEM Core and Domains. In particular, this

version of this document only applies to the following MPDs:

 NIEM releases (including major, minor, and micro releases).

 NIEM core updates.

 NIEM domain updates [NIEM-DomainUpdate] (Note that these are NOT the same as

the NIEM domain schemas that are part of numbered releases).

 NIEM-conformant Information Exchange Package Documentation (IEPD) defining

NIEM data exchanges.

 NIEM Enterprise Information Exchange Models (EIEM) from which one or more NIEM-

conformant IEPDs can be built or based.

In the future, as required, other types of MPDs may be added to this list.

At any point in time, an incomplete MPD will be in some state of development. This

specification is applicable to such developing products in that it establishes standards on the

final, published, production-quality state. In turn, tool vendors can craft, adapt, and/or integrate

software tools that will assist in the development of MPDs from raw parts to finished product.

NIEM is a data layer for an information architecture. Files in an MPD generally define XML

Schema types and declare XML elements and attributes to use in payloads for information

exchanges. While an MPD may also contain files from layers beyond the data layer, this

specification is not intended to define details of other architectural layers. Such files are

generally present only to provide additional context, understanding, or assistance for

implementing the exchange of payloads.

Authoritative sources are not required to revise MPDs that exist before this specification

becomes effective. However, they are always encouraged to consider revising MPDs to meet

this specification, especially when making other significant changes.

1.4 Audience

The following groups should review and comply with this specification:

 The NIEM release manager who is responsible to integrate and publish NIEM releases

and core updates.

 NIEM domain stewards who will develop and publish domain updates.

 NIEM IEPD developers and implementers.

 NIEM tool developers and vendors.

 Organizations that intend to develop an EIEM.

 Individuals or groups responsible to review and approve MPDs.

NIEM Model Package Description (MPD) Specification

4

2 Concepts and Terminology

The presentation of concepts and terms in this section is sequenced for understanding. Each

subsection builds upon previous ones. This section concludes with an explanation of each of the

five MPD classes and a summary of their similarities and differences.

2.1 Key Words for Requirement Levels

Within normative content rules and definitions, the key words MUST, MUST NOT, SHALL,

SHALL NOT, SHOULD, SHOULD NOT, MAY, RECOMMENDED, REQUIRED, and

OPTIONAL in this document are to be interpreted as described in [RFC2119-KeyWords].

2.2 Character Case Sensitivity

This specification imposes many constraints on the syntax for identifiers, names, labels, strings,

etc. In all cases, unless otherwise explicitly noted, syntax is case sensitive. In particular, XML

files in appendices that define particular artifacts, transformations, and examples are case

sensitive.

Also, note that as a general principle, lower case characters are used whenever such will not

conflict with the [NIEM-NDR].

2.3 Artifacts

MPDs are generally composed of files and file sets grouped for a particular purpose. Each file

AND each logical set of such files is called an artifact. In other words, we refer to a set of files

(with a defined purpose) as an artifact, and we refer to each file within that set as an artifact.

Definition: artifact – A single file with a defined purpose or a set of files

logically grouped for a defined purpose. An MPD is a collection of related

artifacts.

While the kernel of an MPD is its XML schema (XSD) artifacts, there are also other kinds of

MPD artifacts. These may include XML, text, or graphic files meant to inform humans, or

intended to help accelerate use and implementation of the MPD by software tools. Appendix F:

MPD Artifacts contains a listing of mandatory and optional artifacts for the five types of MPDs.

The various types of artifacts are described in more detail in subsequent sections.

2.4 Schema-Namespace Correspondence in NIEM

To simplify automatic schema processing and reduce the potential for confusion and error,

[NIEM-NDR] Principle 8 states that "each NIEM-conformant namespace SHOULD be defined

by exactly one reference schema." To support this principle, [NIEM-NDR] Rule 6-5 disallows

the use of xsd:include, and [NIEM-NDR] Rule 6-35 mandates the use of the xsd:schema

targetNamespace attribute in NIEM-conformant schemas.

NIEM Model Package Description (MPD) Specification

5

The foregoing NDR rules and principle imply that each NIEM namespace is a single NIEM-

conformant schema, and each NIEM-conformant schema declares a target namespace. NIEM

does not permit schemas without target namespaces, unless they are from sources outside of

NIEM.

2.5 Harmonization

Harmonization is a process that NIEM governance committees and domain stewards iteratively

apply to NIEM content (specifically, its semantics, structure, and relationships) during the

preparation of a NIEM major or minor release. The result is change and evolution of the model

with the intent of removing semantic duplication and overlap while improving representational

quality and usability.

Definition: harmonization – Given a data model, harmonization is the process

of reviewing its existing data definitions and declarations; reviewing how it

structures and represents data; integrating new data components; and refactoring

data components as necessary to remove (or reduce to the maximum extent)

semantic duplication and/or semantic overlap among all data structures and

definitions resulting in representational quality improvements.

2.6 Validation

This specification often refers to the process of validation, that is, validating XML schemas and

XML document instances. Do not interpret these references to mean that validation must always

be performed. In reality, the only time a schema or instance validates is when some process

executes and performs validation. Generally, this should occur periodically during design time

to ensure the conformance and quality of an information exchange definition. However, there

are many cases the need to validate is a local architectural or policy decision, and some of these

cases may require runtime validation.

The schemas that define a NIEM information exchange must be authoritative. Application

developers may use other schemas for various purposes, but for the purposes of determining

conformance, the authoritative schemas are relevant. This does not mean that XML validation

must be performed on all XML instances as they are served or consumed; only that the XML

instances validate if and when XML validation is performed. The XML Schema component

definitions specify XML documents and element information items, and the instances should

follow the rules specified by the schemas, even when validation is not performed.

2.7 Reference Schema

A NIEM reference schema is a schema that is intended to be the authoritative definition of

business semantics for components in its namespace. Reference schemas include the NIEM

Core schema, NIEM domain schemas, and NIEM domain update schemas. The normative

definition for a reference schema and applicable conformance rules are found in the [NIEM-

NDR]. It is repeated here:

NIEM Model Package Description (MPD) Specification

6

Definition: reference schema – An XML Schema document that meets all of the

following criteria:

• It is explicitly designated as a reference schema. This may be declared by an

MPD catalog or by a tool-specific mechanism outside the schema.

• It provides the broadest, most fundamental definitions of components in its

namespace.

• It provides the authoritative definition of business semantics for components in

its namespace.

• It is intended to serve as the basis for components in IEPD and EIEM schemas,

including subset schemas, constraint schemas, extension schemas, and exchange

schemas.

• It satisfies all rules specified in the [NIEM-NDR] for reference schemas.

See also reference schema set.

Definition: reference schema set – A set of related reference schemas, such as a

NIEM release. See also reference schema.

The [NIEM-NDR] conformance rules for reference schemas are generally stricter than those for

other classes of NIEM-conformant schemas. For example, they are required to employ an

xsd:annotation with xsd:documentation, and xsd:appinfo elements that

encapsulate semantic information for each XML element and attribute declaration, and type

definition.

Reference schemas are very uniform in their structure. As they are the primary definitions for

data components, they do not need to restrict other data definitions, and they are not allowed to

use XML Schema's complex type restriction mechanisms.

2.8 Coherence of Schema Sets

A NIEM release is always a coherent set of schemas in which multiple versions of semantically

identical types or properties do not exist; and all types and properties are uniquely defined and

declared. Each numbered release has been harmonized, tested, and carefully reviewed by NIEM

governance committees in order to eliminate semantic duplication.

The [NIEM-HLVA] defines a coherent schema set as one that has the following properties:

(1) the schema set does not refer to a schema outside the set (i.e., the set is closed), and (2) the

set does not include two different versions of the same component in an incompatible way.

Definition: schema coherence – A schema set is coherent when it has the

following properties: (1) the schema set does not refer to a schema outside the set

(i.e., the set is closed), and (2) the set does not include two different versions of

the same component in an incompatible way.

NIEM Model Package Description (MPD) Specification

7

Consider the following simple example of incoherence in the figures below. Consider Figure

2-1, in which Justice domain has published a new schema (version 4.1). Note the descendant

relationships between the old and new data components. A schema set consisting of Screening

1.1 and Justice 4.1 is incoherent because it refers to the old Justice 4.0 schema outside the set,

and therefore, violates the first criterion (the set must be closed). To resolve this we could

incorporate the older 4.0 version into this set. Figure 2-2 indicates that adding Justice 4.0

violates the second criterion because multiple versions of the same component will exist that are

incompatible. To make a coherent schema set, either the Screening domain must be adjusted to

use the new Justice 4.1 component or the schema set must be revised to use the Screening

domain with Justice 4.0 and not Justice 4.1.

Figure 2-1. Incoherent schema set - not closed.

Figure 2-2. Incoherent schema set - incompatible data components.

NIEM Model Package Description (MPD) Specification

8

In general, two or more versions of a data component are incompatible when a type or element in

one version of a schema has been copied to or redefined/redeclared in another, and both versions

must exist in the same set because of cross referencing (as in the figure above). Note that even if

all data components have not changed within two versions of the same schema, a set that

contains both schemas will still be incoherent because the mere duplication of a data component

in a new namespace is considered redefinition (and, of course, duplication).

However, two versions of a data component can also exist in a compatible way. The

compatibility of two different versions of a data component depends on the way the ancestor

component was changed to obtain the descendant. In Figure 2-2, Justice 4.1 and 4.0 Arrest

elements are incompatible because the 4.1 version of Arrest was simply given an additional

property (NewElement) and is essentially a redeclaration of the 4.0 version. This results in two

semantically identical elements. In fact, as already mentioned, even if the ArrestType had

remained the same across both versions, the 4.1 version is considered a redefinition and

duplication of the 4.0 version.

On the other hand, if the 4.1 ArrestType had been derived (through type derivation) from the

4.0 version, and the 4.1 Arrest element had been made substitutable for the 4.0 version, then

these components would be compatible. The difference is that these components have a clear

relationship to their ancestors that is defined through XML mechanisms, whereas the former

components do not. Furthermore, the substitutability property makes these components easily

usable together (i.e., compatible).

The need to be a coherent schema set is ONLY required by official NIEM releases (major,

minor, and micro). A core update is not absolutely required to be coherent with the core it

applies to. However, except in rare cases, it will be crafted to be coherent. In order to provide

flexibility to domains, a domain update schema set is not required to be coherent. Whether or

not a domain update is coherent with a given release, is dependent upon its change log which

indicates how it changes the schemas it applies to.

2.9 MPD Types

This section details the five classes of MPDs currently defined in NIEM.

2.9.1 NIEM Release

A NIEM release is an MPD containing a full set of harmonized reference schemas that

coherently define and declare all content within a single version of NIEM. NIEM releases

include major, minor, and micro releases (as defined in the NIEM High Level Version

Architecture (HLVA) [NIEM-HLVA]).

Definition: release – A set of schemas published by the NIEM Program

Management Office (PMO) at http://release.niem.gov/niem/ and assigned a

unique version number. Each schema defines data components for use in NIEM

information exchanges. Each release is independent of other releases, although a

schema may occur in multiple releases. A release is of high quality, and has been

vetted by NIEM governance bodies. A numbered release may be a major, minor,

or micro release.

NIEM Model Package Description (MPD) Specification

9

Current real examples of NIEM releases include NIEM major releases 1.0 and 2.0, and minor

release 2.1. Each numbered release is a set of schemas that includes a NIEM Core (along with

the various code list schemas that supplement Core) and NIEM domain schemas.

Definition: major release – A NIEM release in which the NIEM Core schema

has changed since previous releases. The first integer of the version number

indicates the major release series; for example, versions 1.0, 2.0, and 3.0 are

different major releases.

Definition: minor release – A NIEM release in which the NIEM Core has not

changed from previous releases in the series, but at least one or more domain

schemas have changed. A second digit greater than zero in the version number

indicates a minor release (for example, v2.1). Note also that major v2.0 and

minor v2.1 are in the same series (i.e., 2) and contain the same NIEM Core

schema.

Definition: micro release – A NIEM release in which neither the NIEM Core nor

the domain schemas have changed from the previous major or minor release, but

one or more new schemas have been added (without impact to the domain or Core

schemas). A third digit greater than zero in the version number indicates a micro

release (for example, v2.1.1 – this release does not exist as of this date).

A micro release is a NIEM release that adds new data components to the Core, domains, or both

without removing or modifying existing Core and domain schemas or content. Figure 2-3

illustrates both real (v1.0, v2.0, and v2.1) and fictitious examples of major, minor, and micro

release composition.

Note that a given NIEM schema (namespace) can exist in multiple numbered releases. For

example, as illustrated in Figure 2-3, both NIEM 2.0 and 2.1 contain (reuse) the same NIEM

Core 2.0 schema. Reuse of schemas among releases is carefully coordinated to ensure coherence

is maintained within each release. The [NIEM-HLVA] defines the processes for numbering

releases and identifying the schemas that compose them. Later, this specification will outline a

similar version numbering scheme for MPDs and their artifacts.

NIEM Model Package Description (MPD) Specification

10

Figure 2-3. Examples of NIEM numbered releases.

2.9.2 Domain Update

A domain update is an MPD containing reference schemas that represent changes to NIEM

domains. The [NIEM-HLVA] defines a domain update as both a process and a NIEM product.

Through use and analysis of NIEM releases and published content, domain users will identify

issues and new data requirements for the domain and sometimes Core. NIEM domains use these

issues as the basis for incremental improvements, extensions, and proposed changes to future

NIEM releases. Both the process and product of the process are referred to as domain update.

This MPD Specification is applicable to a domain update product.

Definition: domain update – A MPD that contains a schema or set of schemas

issued by one or more domains that constitutes new content or an update to

content that was previously included in a NIEM release. A domain update may

define and declare new versions of content from NIEM releases or other

published content. The issuing body vets each update before publishing, but the

update is not subject to review by other NIEM bodies. A domain update must be

NIEM-conformant, but otherwise it has fewer constraints on quality than does a

NIEM release. Domain update schemas contain proposed future changes to

NIEM that have not been published in a numbered release and have not been

vetted by NIEM governance bodies (except by the domain or domains involved).

Domain updates are published to the NIEM Publication Area at

http://publication.niem.gov/ and available for immediate use within information

exchanges.

A domain update represents changes to domain schemas. The primary artifacts that define these

changes are one or more reference schemas and a change log. A domain update may apply to

one or more domain namespaces within a single NIEM major, minor, or micro release. A

NIEM Model Package Description (MPD) Specification

11

domain steward uses a domain update to: (1) make new or changed domain content immediately

available to NIEM data exchange developers between NIEM releases, and (2) request that new

or changed content be harmonized into a future NIEM release. (See the Domain Update

Specification [NIEM-DomainUpdate] which provides normative details about domain updates

and the associated processes.)

2.9.3 Core Update

When necessary, the NIEM PMO can publish a core update. This is essentially identical to a

domain update in terms of structure and use, with two important exceptions. First, a core update

records changes that apply to a particular NIEM core version or another core update. This also

means it is applicable to all NIEM releases using that same core version. Second, a core update

is never published to replace a NIEM core. It is intended to add new schemas, new data

components, new code values, etc. to a core without waiting for the next major release. In some

cases, minor modifications to existing data components are possible.

Definition: core update – An MPD that it applies changes to a given NIEM core.

It is never used to replace a NIEM core; instead, it is used to add new schemas,

new data components, new code values, etc. to a particular NIEM core. In some

cases, a core update can make minor modifications to existing core data

components.

As with domain updates, all core updates are published to the NIEM Publications Area, their

changes are immediately available for use in IEPDs, and they will be harmonized and integrated

into the next major NIEM release.

2.9.4 Information Exchange Package Documentation (IEPD)

NIEM Information Exchange Package Documentation (IEPD) is an MPD that defines a

recurring XML data exchange.

Definition: Information Exchange Package Documentation (IEPD) – An

MPD that contains NIEM-conformant schemas that define one or more recurring

XML data exchanges.

A NIEM IEPD is a set of valid XML schemas that may include portions of NIEM Core schemas

(and updates), portions of NIEM Domain schemas (and updates), enterprise-specific or IEPD-

specific extension schemas, and at least one exchange schema that defines a document element

(as defined in [W3-XML-InfoSet]). The schemas contained in an IEPD work together to define

a class of XML instances that consistently encapsulate data for information exchanges. Each

XML instance in this class validates against the set of XML schemas contained within the IEPD.

XML schemas in a NIEM IEPD conform to the [NIEM-NDR] and may use or extend data

component definitions drawn from NIEM.

An IEPD consists of a minimal but complete set of artifacts (XML schemas, documentation,

sample XML instances, etc.) that together define and describe an implementable NIEM

information exchange. A complete and normative IEPD should contain all the schema

definitions and instructional material necessary to:

NIEM Model Package Description (MPD) Specification

12

 Understand information exchange content, semantics, and structure.

 Create and validate information exchanges defined by the IEPD.

 Identify the lineage of the IEPD and optionally its artifacts.

An NIEM IEPD defines an Information Exchange Package (IEP), which is an XML instance

document that validates to the schemas in the IEPD. An IEP is an information message payload

as it will appear when transmitted electronically and serialized as XML. ([FEA-DRM] and

[GJXDM-IEPD] and are the original sources of the terms information exchange package and

information exchange package documentation, respectively).

Definition: Information Exchange Package (IEP) – An XML document that is

a correct instantiation of a NIEM IEPD, and therefore, validates with the XML

schemas of that IEPD.

2.9.5 Enterprise Information Exchange Model (EIEM)

As an organization develops IEPDs, the organization may realize that many of its IEPDs have

similar business content. A collection of closely related business data could be organized at an

object level and defined as extension data components. In NIEM, these extension components

are referred to as Business Information Exchange Components (BIEC), because they are either

specific to an organization’s business or they represent a more general line of business that

crosses organizational lines. Often they are business data components developed and used by

multiple organizations within the same community of interest. So, instead of an "organization,"

it is more appropriate and provides better context if we use the term information sharing

enterprise.

Definition: Information Sharing Enterprise – A group of organizations with

business interactions that agree to exchange information, often using multiple

types of information exchanges. The member organizations have similar business

definitions for objects used in an information exchange and can usually agree on

their common BIEC names and definitions.

Information sharing enterprises may cross various levels of government and involve multiple

business domains. They are self-defining and can be formal (with specific governance) or

informal and ad hoc. An information sharing enterprise is the primary entity that supports the

development and management of BIECs and an associated Enterprise Information Exchange

Model (EIEM) (to be discussed next). Henceforth, unless otherwise stated, all references to an

enterprise will implicitly mean information sharing enterprise.

A Business Information Exchange Component (BIEC) [NIEM-BIEC] is a NIEM-conformant

content model in XML Schema for a data component that meets the specific business needs of an

information sharing enterprise for exchanging data about something that is a part of one or more

information exchanges. This data component is tailored and intended to be used consistently

across multiple IEPDs built by an enterprise. A BIEC is a NIEM-conformant data component

that is:

NIEM Model Package Description (MPD) Specification

13

 Reused from a NIEM release (for example, as a subset; with possibly modified

cardinality), or

 Extended per the [NIEM-NDR] from an existing NIEM data component, or

 Created per the [NIEM-NDR] as a new data component that does not duplicate existing

NIEM components within a release in use.

Definition: Business Information Exchange Component (BIEC) – A NIEM-

conformant XML schema data component definition or declaration (for a type,

element, attribute, or other XML construct) reused, subsetted, extended, and/or

created from NIEM that meets a particular recurring business requirement for an

information sharing enterprise.

The use of BIECs has the potential for simplifying IEPD development and increasing

consistency of the business object definitions at all steps in the process, including exchange

content modeling, mapping to NIEM, creating NIEM extension components, and generating

XML schemas.

An Enterprise Information Exchange Model (EIEM) is an MPD that incorporates BIECs that

meet enterprise business needs for exchanging data using NIEM [NIEM-BIEC]. An EIEM is an

adaptation of NIEM schemas, tailored and constrained for and by an enterprise. An EIEM

contains the following schemas that are commonly used or expected to be used by the authoring

enterprise:

 One standard NIEM schema subset (or reference schema set).

 One or more NIEM extension schemas that extend existing NIEM data components or

establish new NIEM-conformant data components.

 Optionally, as needed, one or more NIEM constraint schema sets (usually based on a

subset).

 Optionally, as needed, one or more XML schemas for non-NIEM (non-conformant)

standards with associated extension schema(s) that contains adapter types for the data

components that will be used from those non-NIEM schemas (per [NIEM-NDR]).

Definition: Enterprise Information Exchange Model (EIEM) – An MPD that

contains NIEM-conformant schemas that define and declare data components to

be consistently reused in the IEPDs of an enterprise. An EIEM is a collection of

BIECs organized into a subset and one or more extension schemas. Constraint

schemas and non-NIEM-conformant external standards schemas with type

adapters are optional in an EIEM.

An information sharing enterprise that creates and maintains an EIEM authors IEPDs by reusing

its EIEM content instead of (re)subsetting NIEM components and (re)creating extensions. An

EIEM may also contain business rules or constraint schemas tailored to the enterprise and

designed to restrict variability in use of NIEM data components. This not only saves time, but it

also ensures that enterprise IEPDs reuse NIEM and associated extensions consistently. (Note

that schema subsets, extension schemas, and constraint schemas will be defined and discussed in

NIEM Model Package Description (MPD) Specification

14

more detail later in this document). Figure 2-4 below illustrates relationships among BIECs, an

EIEM, and a family of IEPDs (Constraint schemas are optional and not depicted in Figure 2-4).

Figure 2-4. BIECs, EIEM, and a small family of IEPDs.

2.10 Similarities and Differences of MPD Classes

It will be helpful to summarize the foregoing discussions by listing the primary similarities and

differences among the various types of MPDs. This will help highlight the nature of this

specification as a baseline and point of leverage for all five classes of MPDs: NIEM release,

core update, domain update, IEPD, and EIEM. Note that these lists are not all inclusive.

MPD class similarities:

 Principal artifacts are XML schemas (XSD), the purpose for which is to define and

declare reusable data components for information exchanges or to define the exchanges

themselves.

 Each MPD requires a self-documenting mpd-catalog.xml artifact (containing metadata

and a listing of all its artifacts), which establishes its purpose, lineage, organization, etc.

 Each MPD requires a change log.

 Each MPD requires a Uniform Resource Identifier (URI) and a version number.

 Each MPD must be packaged as a self-contained ZIP archive (in one form). Self-

contained simply means that an MPD has copies of (not just URLs or references to) all

the schemas needed to validate instances it defines.

NIEM Model Package Description (MPD) Specification

15

 Each MPD may contain optional alternate representations besides XML Schema (for

example, a generic graph, a UML graph, XMI, database format, spreadsheet, etc.).

MPD class differences:

 IEPDs and EIEMs contain subset, extension, and constraint schema sets. NIEM releases,

core updates, and domain updates contain reference schema sets.

 IEPDs must contain one or more exchange schemas; other MPD classes do not.

 An IEPD must contain at least one sample instance corresponding to each root element

declared in its exchange schema(s). An XSLT artifact to display instances is optional.

 EIEMs and domain updates may optionally contain sample XML instances and XSLT

files to display them. NIEM releases and core updates do not.

 Domain updates supersede other published schemas/namespaces and do not include other

unchanged content. IEPDs, EIEMs, and NIEM releases are independently complete.

Core updates can only supplement and never replace a NIEM core. However, a core

update can be issued as a new complete standalone schema to be used with a NIEM core.

The following table summarizes the similarities and differences of MPD classes by indicating the

characteristics for each:

Table 2-1. Comparison of MPD classes.

3 MPD XML Schema Artifacts

XML schema artifacts are the essential content of MPDs because they normatively define and

declare data components. The purpose of an MPD is determined by the XML schemas and

NIEM Model Package Description (MPD) Specification

16

schema sets it contains; furthermore, each schema may have a different purpose. The [NIEM-

NDR] addresses the various types of schemas as conformance targets: reference, subset,

extension, exchange, and constraint schemas. Each conformance target may adhere to a different

(though possibly overlapping) set of conformance rules. Consult the [NIEM-NDR] for these

rules.

The following subsections will define each type of NIEM schema and identify the types of

MPDs that may or must contain them. The last subsection discusses sample XML instances

(IEPs) that validate with IEPD schemas, and when such instances are mandatory.

3.1 Reference Schemas

This section generally applies to NIEM releases, core updates, and domain updates. Though not

common, it is also valid to use reference schemas within IEPDs and EIEMs.

Reference schema and reference schema set were defined earlier in Section 2.6, but for

convenience we replicate their definitions and a few of the salient points here.

Definition: reference schema – An XML Schema document that meets all of the

following criteria:

• It is explicitly designated as a reference schema. This may be declared by an

MPD catalog or by a tool-specific mechanism outside the schema.

• It provides the broadest, most fundamental definitions of components in its

namespace.

• It provides the authoritative definition of business semantics for components in

its namespace.

• It is intended to serve as the basis for components in IEPD and EIEM schemas,

including subset schemas, constraint schemas, extension schemas, and exchange

schemas.

• It satisfies all rules specified in the [NIEM-NDR] for reference schemas.

See also reference schema set.

Definition: reference schema set – A set of related reference schemas, such as a

NIEM release. See also reference schema.

A NIEM reference schema is intended to be the authoritative definition schema for a NIEM

namespace, therefore, all NIEM releases, core updates, and domain updates are composed of one

or more reference schemas. As a standalone artifact, a reference schema set is always coherent

and harmonized such that all types and properties are semantically unique (i.e., multiple versions

of semantically identical types or properties do not exist within the set).

As authoritative definitions, NIEM reference schemas satisfy more rigorous documentation

requirements. The [NIEM-NDR] requires that each type definition, and element and attribute

NIEM Model Package Description (MPD) Specification

17

declaration in a reference schema contain an xsd:annotation element that defines its

semantic meaning. As will be explained later, extension schemas are also authoritative

definitions, but in a local sense. They are authoritative within a given IEPD or EIEM, and

therefore, must also satisfy the same rigorous documentation rules as reference schemas.

Typically reference schemas contain data components with the most relaxed cardinality (zero to

unbounded repetition). However, this is not an absolute requirement. Cardinality in reference

schemas may be constrained if necessary to model reality. For example, we might say that

NIEM releases should restrict a Person object to a single occurrence of BirthDate.

Unfortunately, also in reality, criminal persons often present multiple identities and multiple

birth dates; and so the capability to represent such is an important data requirement of NIEM.

3.2 Subset Schemas

This section only applies to IEPDs and EIEMs. NIEM releases, core updates, and domain

updates do not contain schema subsets (only reference schema sets).

3.2.1 Basic Subset Concepts

A NIEM schema subset (also referred to as simply subset) is a set of schemas that constitutes a

reduced set of components extracted from a NIEM reference schema set associated with a given

numbered release or domain update. Any given schema within a subset is referred to as a subset

schema (terms reversed). The primary purpose for a subset is to tailor (usually reducing the size

of) a full NIEM reference schema set for use within an IEPD or EIEM.

Definition: subset schema – An XML Schema document that meets all of the

following criteria:

• It is explicitly designated as a subset schema. This may be declared by an MPD

catalog or by a tool-specific mechanism outside the schema.

• It has a target namespace previously defined by a reference schema. That is, it

does not provide original definitions and declarations for schema components, but

instead provides an alternate schema representation of components that are

defined by a reference schema.

• It does not alter the business semantics of components in its namespace. The

reference schema defines these business semantics.

• It is intended to express the limited vocabulary necessary for an IEPD or EIEM

and to support XML Schema validation for an IEPD.

• It satisfies all rules specified in the Naming and Design Rules [NIEM-NDR] for

subset schemas.

See also schema subset.

Subset schemas generally occur in sets that have been derived from a set of related reference

schemas (such as a NIEM release).

NIEM Model Package Description (MPD) Specification

18

Definition: schema subset (or subset schema set) – A NIEM-conformant set of

subset schemas, derived from a set of reference schemas, but which specifies

instances that may consist of a portion of the reference schema set. See also

subset schema.

Because NIEM adopts an optional and over-inclusive data representation strategy, most elements

in a NIEM reference schema have zero to unbounded cardinality. So, elements with cardinality

minOccurs="0" are optional and may be omitted from a subset if not needed for business

reasons. It is also valid to constrain element cardinality within a subset, as long as it is not

constrained such that the subset relationship is broken. For example, a reference schema element

with cardinality (minOccurs="0", maxOccurs="unbounded") may be constrained to

(0,1) or (1,1) in a subset. However, if a reference schema element's cardinality is

(1,unbounded), it may not be constrained to (0,1) since this breaks the subset relationship.

The interval (0,1) is not contained within, and instead, overlaps the interval

(1,unbounded).

The fundamental rule for schema subsets is as follows:

[Rule 3-1] Any XML instance that validates against a correct NIEM schema

subset will always validate against the entire NIEM reference schema set from

which that subset was created.

Per previous discussion:

[Rule 3-2] NIEM subsets may omit elements with zero cardinality and adjust the

cardinality of elements in reference schemas from which they are derived, as long

as the subset property is maintained.

In addition to adjusting cardinality and omitting data components with zero cardinality, a valid

subset may also omit xsd:annotation elements that are mandatory in reference schemas.

These elements do not impact XML validation which is vital to subsets in IEPDs and EIEMs.

[Rule 3-3] NIEM subset schemas may omit all xsd:annotation elements that

are in the NIEM reference schema from which it is derived.

Note that the process of deriving a subset from a NIEM reference schema set is optional; it is

valid to reuse NIEM reference schemas as is within IEPDs or EIEMs. The primary reasons for

subsetting are to reduce IEPD size and complexity and to focus constraints.

3.2.2 Subset Namespaces

A subset is essentially a reference schema set (numbered release) that has been modified per the

above rules to support business requirements represented in an IEPD or EIEM. A subset derived

from a reference schema set may differ from that reference set only in that its content has been

reduced and/or constrained. For this reason, schemas in a subset adopt target namespaces that

are identical to the corresponding schemas in the reference schema set.

NIEM Model Package Description (MPD) Specification

19

[Rule 3-4] Each schema in a schema subset derived from a schema reference set

bears the same (target) namespace as the schema in the reference set on which it

is based.

3.2.3 Omitting Schemas in Subsets

In some cases, an entire schema appearing in a reference set may be omitted from a

corresponding subset. The following rule specifies when this is valid.

[Rule 3-5.1] A schema contained in a reference schema set may be omitted from

a derived subset, if and only if ALL of the following conditions are true within

that schema:

• No elements/attributes declared or types defined in the schema are required for

business exchange purposes. AND

• No elements/attributes declared or types defined in the schema are required to

support other elements or types within the subset for exchange purposes; in other

words, no references to elements or types in the schema exist in any other schema

of the subset.

When a schema has been omitted from a valid subset, there is no longer a reason to import it

from anywhere within the subset. Therefore, because most XML validators expect the file

identified in the xsd:import schemaLocation attribute to be present, imports of that

schema must be removed:

[Rule 3-5.2] If a schema in a reference schema set has been omitted from a

derived subset, then every xsd:import occurrence of that schema MUST be

removed from all schemas within the subset.

3.2.4 Multiple Subsets in a Single IEPD or EIEM

This section only applies to NIEM IEPDs and EIEMs. NIEM releases, core updates, and domain

updates do not contain schema subsets.

Previous sections defined a single schema subset derived from a reference schema set. In

general, an IEPD or EIEM contains a single cohesive schema subset (which may be a rather

large set of files) based on one numbered NIEM release or domain update.

However, this specification does not restrict the number of different subsets that may be

employed within a single IEPD or EIEM. Furthermore, it does not restrict the employment of

subsets from different numbered releases within a single IEPD or EIEM. However, exercising

this degree of flexibility makes it critically important that developers understand the potential

consequences. NIEM subsets represent a delicate compromise between flexibility and

interoperability. On the one hand, a set of IEPDs based on the same subset and numbered

release use identical data components, thereby enhancing interoperability. On the other hand,

mixing dissimilar subsets from the same numbered release or mixing subsets derived from

various numbered releases has the potential to negatively impact interoperability.

NIEM Model Package Description (MPD) Specification

20

The NIEM mandate that every schema have a unique namespace prevents name conflicts

between reference schema sets and between two subsets derived from different reference sets. In

spite of namespace distinction, mixing subsets of multiple reference schema sets can still

introduce multiple versions of semantically equivalent data components, a potentially ambiguous

situation. Even employing multiple subsets together that have been derived from the same

reference set has the potential to create a similar result. Above all, it is the developer’s

responsibility to ensure that, if mixing subsets from one or more numbered releases within a

single IEPD or EIEM, these artifacts are carefully coordinated and clearly documented to ensure

the various versions of semantically equivalent data components and different schemas with the

same namespaces will not cause conflicts, confusion, and/or failure during validation or

exchange implementation.

3.3 Extension Schemas

This section only applies to NIEM IEPDs and EIEMs. NIEM releases, core updates, and domain

updates do not contain extension schemas.

The normative definition for a NIEM IEPD extension schema is in the [NIEM-NDR]. In

general, an extension schema contains components that use or are derived from the components

in reference schemas. It is intended to express the additional vocabulary required for an IEPD,

above and beyond the vocabulary available from reference schemas.

A IEPD or EIEM developer who determines that NIEM does not contain all elements required

for a given information exchange has two options to account for such requirement shortfalls.

Using rules and techniques outlined in the [NIEM-NDR]:

 Extend an existing NIEM data component.

 Build a new NIEM-conformant data component.

A NIEM extension schema may contain data components built from both options above.

Employment of extension schemas in an IEPD is entirely optional.

Multiple extension schemas are allowed in a single IEPD. Developers will likely want to reuse

many of their extensions in other IEPDs. Therefore, it is most efficient to put all extensions

designed for reuse into one extension schema (or into a well-organized set of extension

schemas), while keeping IEPD-specific extensions in a different schema. The reusable extension

schema or schema set can then be easily redeployed in other IEPDs as needed.

Extension schemas generally contain new data component declarations that may (though not

necessarily) be derived from or reference existing NIEM components. This being the case,

reference schemas do not exist for new data components found within extension schemas.

Therefore, extension schemas must satisfy the more rigorous documentation requirements of

reference schemas in accordance with the [NIEM-NDR]. The definition or declaration of each

new data component (type, element, or attribute) in an extension schema includes an

xsd:annotation element that provides its semantics and NIEM-specific relationships.

NIEM Model Package Description (MPD) Specification

21

3.4 Exchange Schemas

This section only applies to IEPDs. NIEM releases, core updates, domain updates, and EIEMs

do not contain exchange schemas.

An IEPD defines one or more NIEM XML data exchanges, and therefore, a class of XML

instance documents, each of which validates against the XML schemas in that IEPD. An XML

instance document contains exactly one document element, which is the root element of the

instance, and which cannot appear in the content of any other element within that XML instance

document (by definition in [W3-XML] and [W3-XML-InfoSet]).

An IEPD exchange schema declares one or more document elements. Only one document

element can be used in any given information exchange instance (IEP).

Definition: exchange schema – A NIEM-conformant schema which specifies a

document in a particular exchange.

However, a NIEM IEP (instance) could later become the payload of an XML envelope (such as a

SOAP message). That XML envelope (itself an XML document instance) will have its own

document element. In this case, the IEP no longer contains the document element for the

instance. Therefore, in the context of an IEPD, it is more appropriate to refer to a document

element as a root element of an IEP.

Definition: IEP root element – The single top-level element in an IEP (instance).

In the absence of any other XML wrapping of an IEP, a root element declared in

an exchange schema is an IEP document element.

This results in the following rule:

[Rule 3-6] An IEPD MUST contain at least one exchange schema artifact that

declares at least one top-level root element for IEP instances specified by the

IEPD.

Note that neither [W3-XML] nor this rule restricts the number of root elements that can be

declared by an IEPD exchange schema. Any XML schema, including a NIEM exchange

schema, may declare multiple root elements. Furthermore, a single IEPD may contain multiple

exchange schemas if such are necessary to meet business requirements.

Nonetheless, regardless of the number of root elements declared by a given exchange schema,

and in accordance with [W3-XML], any XML instance (i.e., IEP) that validates against a NIEM

IEPD must contain one and only one root element and that element must be declared within at

least one exchange schema in the IEPD.

Similar to the case of multiple subsets, the flexibility provided by allowing multiple root

elements and multiple exchange schemas in a single IEPD has the potential to be both powerful

and problematic. Again, developers are responsible to carefully coordinate and clearly document

multiple roots and/or multiple exchange schemas in a single IEPD to prevent ambiguity and

misinterpretation related to validation, implementation, and use. (See Section 5 Optional MPD

Artifacts for documentation artifacts that an IEPD may include when needed.)

NIEM Model Package Description (MPD) Specification

22

The [NIEM-NDR] does not allow locally declared elements; all NIEM elements are declared

with global scope at the top level. This means that any new element declaration in a NIEM-

conformant exchange schema has the potential to be the root element in a corresponding IEP.

Therefore, if an IEPD author does not intend for a new element to be an IEP root element, then

do not declare it in a NIEM exchange schema. Declare it in an extension schema instead.

[Rule 3-7] An IEPD exchange schema MUST NOT declare any XML element

that is not intended for use as an IEP root element.

Note that this rule does not preclude the use (through "ref=") of other elements within the

exchange schema that are declared globally elsewhere within an IEPD. In general, elements that

must be used within an exchange schema, but are not intended to be IEP root elements should be

declared in extension schemas.

Now that both extension and exchange schemas have been described, it is useful to mention the

following special case. Although generally rare, it is possible to develop an IEPD without an

extension schema. If an author creates an IEPD based entirely on existing NIEM elements, then

no extension schema is necessary (and this is the reason it is deemed optional). In this case, the

exchange schema defines a root element type to contain only existing NIEM elements (i.e.,

drawn from a subset or reference schemas) and declares the root element of that type. The rule

above merely ensures that the exchange schema declares root element(s) that are intended and

will be used as the roots of XML instances, and no others. However, because all NIEM elements

must be declared with global scope [NIEM-NDR], in order to declare non-root elements in an

IEPD, they will have to be declared in an extension schema.

It is usually good practice to maintain namespace cohesion. If root elements declared in an IEPD

tend to change together, then group them together in the same namespace (i.e., single exchange

schema). If elements tend to change independently, then group them in separate namespaces

(i.e., multiple exchange schemas). Furthermore, while there are no restrictions on the number of

root elements and exchange schemas, it may be best to first consider declaring one root per

exchange schema if this arrangement can support the IEPD business requirements. If not, only

then consider scaling upward. In all cases, clearly document the intent and rationale for how an

IEPD is organized and to be implemented.

3.5 Base Schema Set

Within an MPD, the base schema set is the set of XML schemas that defines the information

exchange or model in the MPD. This set may incorporate NIEM-conformant reference schemas,

subset schemas, extension schemas, exchange schemas, as well as schemas from an external non-

NIEM-conformant source (for example, GML, Geospatial Markup Language).

Definition: base schema set – A NIEM MPD artifact that is the set of all NIEM-

conformant and external non-conformant XML schemas that together specify an

information exchange or information model for an MPD. A base schema set may

incorporate reference, subset, extension, and exchange schemas, as well as

external schemas from authoritative sources outside of NIEM.

An MPD contains one and only one base schema set.

NIEM Model Package Description (MPD) Specification

23

[Rule 3-8] An MPD MUST contain one and only one base schema set.

3.6 Constraint Schemas

This section only applies to NIEM IEPDs and EIEMs which may use constraint schemas. NIEM

releases, core updates, and domain updates do not contain constraint schemas.

A constraint schema is an optional IEPD or EIEM artifact that is used to express business rules

for a class of XML documents, and is not assumed to be a definition for the semantics of the

components it contains and describes. Instead, a constraint schema uses the XML Schema

definition language to add constraints and restrictions to components defined or declared by

other schemas, usually from a schema subset.

Definition: constraint schema – A schema which adds additional constraints to

NIEM-conformant instances. A constraint schema or a constraint schema set

validates additional constraints imposed on an XML instance only after it is

known to be NIEM-conformant (i.e., has been validated by reference schemas,

subset schemas, extension schemas, and/or exchange schemas). Constraint

schema validation is a second-pass validation that occurs independently of and

after conformance validation. A constraint schema need not validate constraints

that are applied by other schemas. See also constraint schema set.

Definition: constraint schema set – A set of related constraint schemas that

work together, such as a constraint schema set built by adding constraints to a

schema subset. See also constraint schema.

Note that constraint schemas are generally useful when it is necessary to impose restrictions that

are more complex than cardinality. If only cardinality restrictions are needed, then it is easier

and more efficient to set these directly in the schema subset and avoid the use of constraint

schemas. Otherwise, a constraint schema may be necessary. Note however, that any cardinality

restrictions placed on NIEM release components within subsets must not violate the rules

established in 3.2.1 Basic Subset Concepts which define the relationship of a subset schema to

the reference schema on which it is based.

The [NIEM-NDR] provides a normative definition and description of constraint schemas.

However, a few points are worth mentioning here.

Use of constraint schemas is one option for applying additional business rules to or tightening

constraints on NIEM IEPs beyond what NIEM itself provides. This particular technique uses

XML Schema. NIEM also allows other methods that do not use XML Schema, such as [ISO-

Schematron] or other language methods. However, at this time there are no normative rules for

how these techniques should be employed in NIEM IEPDs or EIEMs. Therefore, if other

techniques are used, it is a developer responsibility to incorporate appropriate artifacts and clear

documentation.

NIEM Model Package Description (MPD) Specification

24

Constraint schemas are generally designed and employed in sets, similar to schema subsets and

reference sets. A common practice for creating an IEPD or EIEM constraint schema set is to

start with a valid NIEM subset and modify this set to further restrict the class of XML documents

(IEPs) that will validate with this constraint set. However, an extension or exchange schema can

also be used to derive a constraint schema. The namespace of a constraint schema is established

the same way the namespace of a subset schema is established – it reuses the target namespace of

the schema from which it is derived.

[Rule 3-9] A constraint schema bears a target namespace that has been

previously assigned by a reference schema, extension schema, or exchange

schema, or is a schema that is intended to support a constraint schema that has

such a target namespace.

To use a constraint schema to tighten constraints on IEPs, a two-pass validation technique is

employed. In the first pass, an IEP is validated against the schema subset, extensions, and one

exchange schema. This pass ensures that IEP semantics and structure conform to the NIEM

model and NDR. In the second pass, an IEP is checked against a constraint schema set, which

may contain constrained versions of the schema subset, extensions, and the appropriate exchange

schema. This pass ensures that the IEP also satisfies the additional constraints (i.e., business

rules that the first pass was unable to validate).

There is no restriction on the number of constraint schema sets that an IEPD or EIEM can

employ. As in other advanced situations, developers must clearly document their intentions for

and use of multiple constraint schema sets.

In general, constraint schemas have far fewer requirements than other classes of NIEM schemas.

Since they work in tandem with NIEM normative schemas, constraint schemas are allowed to

use the XML Schema language in any way necessary to express business rules. This means that

to constrain instances, constraint schemas can employ XML Schema constructs that are not

allowed in other classes of NIEM schemas.

BIECs in particular may have additional business rules in constraint schemas. A normative

NIEM BIEC Specification (in progress at the time of the publication of this MPD Specification),

will supplement or obviate constraint schemas with consistent and formal techniques for

representing business rules within NIEM components. However, as already mentioned, the

MPD Specification does not prohibit or restrict the application of formal business rule techniques

to MPDs now.

Finally, within an MPD, constraint schemas and constraint schema sets are completely distinct

from the base schema set. In the future, NIEM will prefer business rules over constraint schemas

as the primary method for further constraining a base schema set.

3.7 Classes of MPDs vs. Classes of Schemas

The chart in Table 3-1 summarizes which types of schemas are contained in which classes of

MPDs and where they are not applicable (NA = Not Applicable; U = unbounded).

Notice that only NIEM releases, core updates, and domain updates contain reference schema

sets, while only IEPDs and EIEMs contain the user developed schema sets. Since an IEPD

NIEM Model Package Description (MPD) Specification

25

defines at least one data exchange, it must contain at least one exchange schema. Furthermore,

the diamonds () indicate that a NIEM-conformant IEPD or EIEM must have at least one schema

that is either a NIEM reference schema or a subset derived from a NIEM reference schema (See

[Rule 3-10] below this table).

Table 3-1. MPD classes vs. schema classes

[Rule 3-10] A NIEM-conformant IEPD or EIEM MUST contain at least one

schema that is either a NIEM reference schema or a subset derived from a NIEM

reference schema.

3.8 Sample XML Instances

XML schemas define XML data exchange instances. It is certainly possible to construct an

example XML instance for an entire NIEM release, but such an instance is of questionable value.

Rarely, if ever, will an entire NIEM release be used to define a data exchange. However, sample

XML instances are very valuable artifacts to include with IEPDs. As samples of the actual

exchange data, instances can help an IEPD implementer to understand the original intent of the

IEPD developer. They can be used by an implementer as data points for validation with the

IEPD schemas. And finally, the inclusion of valid, meaningful sample XML instances is an

indication of IEPD quality. For these reasons, IEPDs require valid sample XML instances.

[Rule 3-11] A NIEM IEPD MUST contain at least one valid sample XML

instance (i.e., IEP) artifact for each exchange schema element that can be the root

of a corresponding IEP.

The intent of this rule is not to provide a test for all permutations of XML instances that might be

possible given the schema definitions and declarations. As the value propositions explain, its

purpose is to ensure IEPD developers have tested their own designs, and to provide

implementers with examples they can use for additional understanding and guidance. IEPD

developers should strive to include sample XML instances that (1) capture real world business

cases of data exchanges, and (2) exercise as many data component definitions and declarations in

the schemas as possible. While both of these goals may not be achievable in a single sample

XML instance, developers have the option to include multiple sample XML instances; however,

only one per intended root element is mandatory.

NIEM Model Package Description (MPD) Specification

26

Note that each sample XML instance illustrates one view of the data based on a chosen set of

conditions that apply to an IEP. Other views based on different conditions likely exist. A

developer must review the business rules and other documentation in an IEPD to ensure

understanding of all possible conditions. Do not rely exclusively on sample XML instances,

since they are not required to account for all IEP permutations.

This specification encourages but does not mandate the inclusion of sample XML instances for

EIEMs and domain updates. Again, such instances may be valuable to user understanding of the

intent and usage of data components (especially, those that are new, extended, or changed).

4 MPD Documentation Artifacts

A variety of documentation files may be incorporated into a NIEM MPD. However, in addition

to XML schemas, there are only two mandatory documentation artifacts required by every MPD:

the mpd-catalog and the change log. An MPD catalog (mpd-catalog.xml) contains identifiers,

key metadata, information, and relationships about the MPD. The change log provides a history

of modifications.

A master document is also mandatory for IEPDs and EIEMs. These MPD classes are built by

different developers, and may be registered into a repository for reuse by many other users and

developers; therefore, a minimal form of documentation is absolutely necessary. An IEPD or

EIEM master document is the primary source and starting point for human readable

documentation (similar to a "readme" file), and should reference (and describe) any other

separate documentation artifacts. This requirement ensures that baseline documentation is

consistently rooted in a clearly visible artifact within each IEPD and EIEM.

The following subsections will address these artifacts as well as the concepts, metadata, and

content each supports.

4.1 Catalog

Every NIEM MPD describes itself through a mandatory mpd-catalog artifact. An mpd-catalog is

a multi-purpose XML file containing metadata that describe an MPD’s

 Unique identification

 Basic descriptive characteristics

 Directory structure and artifacts

 Lineage and relationships to other MPDs

This metadata is designed to be the minimal required that will facilitate human understanding,

tool support, and machine processing. The MPD uses and functions that the mpd-catalog is

designed to support include (but are not limited to):

 Automatic identification and processing of artifacts

 Browsing and understanding of MPD artifacts and their content

NIEM Model Package Description (MPD) Specification

27

 Conformance and instance validation (as needed)

 Automatic registration in a registry/repository

 Search, discovery, retrieval of MPDs (for example, through metadata values)

 Reuse of MPDs and their artifacts

 Reuse of Business Information Exchange Components (BIEC) and associated EIEMs

 Tracing and analysis of MPD pedigree

[Rule 4-1] An MPD MUST contain an XML mpd-catalog artifact that validates

with the NIEM MPD catalog schema (XSD) and that resides in the root directory

of the MPD and bears the file name "mpd-catalog.xml".

The catalog identifies every artifact, its relative path name, file type, and purpose. This enables a

machine to find every artifact regardless of its location within an MPD, and know exactly what it

is used for, and therefore, how to process it. Appendix A: MPD Catalog Schema defines the

structure and semantics of a NIEM mpd-catalog.xml file.

4.2 Metadata Concepts

The MPD catalog contains both required and optional metadata for the MPD and its artifacts.

The following subsections specify the syntax, formats, and semantics for that metadata.

4.2.1 Version Numbering Scheme

Many published MPDs will be periodically revised and updated; therefore, versioning is required

to clearly indicate that changes have occurred. A version number is actually part of the unique

identification for an MPD (to be discussed in a subsequent section). For this reason:

[Rule 4-2] Every MPD MUST be assigned a version number.

In order to maintain some consistency while allowing reasonable flexibility to authors, this

specification establishes a simple version numbering scheme that is consistent with most

common practices. This is the same version numbering scheme that is used for all NIEM

releases.

[Rule 4-3] All NIEM version numbers adhere to the regular expression:

 version ::= digit+ ('.' digit+)* (status digit+)?

 Where:

 digit ::= [0-9]

 status ::= 'alpha' | 'beta' | 'rc' | 'rev'

 'alpha' indicates early development

 'beta' indicates late development; but changing or incomplete

 'rc' indicates release candidate; complete but not approved as operational

NIEM Model Package Description (MPD) Specification

28

 'rev' indicates very minor revision that does not impact schema validation

(The regular expression notation used above is from XML 1.0 (Fifth Edition):

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation)

The regular expression in [Rule 4-3] allows the following example version numbers:

 1

 1.2

 1.3.1.0

 1.2alpha13

 199.88.15rev6

There are two implications in [Rule 4-3]. The first is that in some cases this version scheme

implies and confirms a chronology of releases. For example, a given product labeled version 2.3

must have been released before the same product labeled 2.3.1. Therefore, version 2.3.1 is more

current than version 2.3.

However, this is a multi-series version scheme, and chronological relationships exist only within

a given series. So, for example, nothing can be said about a chronological relationship between

versions 2.2.4 and 2.3. This is because version 2.2.4 is in a different series (i.e., 2.2) and could

actually have been released after 2.3. Figure 4-1 illustrates a system of versions that uses the

numbering scheme of [Rule 4-3].

Figure 4-1. Example versioning system.

Figure 4-1 illustrates eight different version series. Within this illustration these are the only

sequences that have chronological relationships that can be identified through version numbers.

 Series 2: 2.2, 2.3, 2.4

 Series 3: 3.0, 3.1, 3.2

 Series 2.2: 2.2(.0), 2.2.1, 2.2.2, 2.2.3, 2.2.4

 Series 2.3: 2.3(.0), 2.3.1

 Series 2.4: 2.4(.0), 2.4.1

 Series 3.0: 3.0(.0), 3.0.1, 3.0.2

 Series 3.1: 3.1(.0), 3.1.1

 Series 3.2: 3.2(.0), 3.2.1, 3.2.2

NIEM Model Package Description (MPD) Specification

29

The second implication of [Rule 4-3] is that pre-releases are easily identified by the strings

"alpha", "beta", and "rc". These strings are simple visible indicators of the status or stage of

development of an MPD.

This specification places no further restrictions or meaning (implied or otherwise) on a version or

release number. Authors have the option to use numbers between dots to indicate degree of

compatibility or other relationships between versions as needed. For example, for a given MPD,

the author may declare that if an instance validates to version 4.2.3, then it will also validate to

version 4.2. Such a claim is acceptable. However, this specification does not imply any such

relationships. Any meaning assigned to version sequence by an authoritative source should be

unambiguously documented within the MPD.

[Rule 4-4] A higher MPD version number within a version series does NOT

imply compatibility between versions. Compatibility between or among MPD

versions MUST be explicitly stated in documentation.

Note that an author who updates an existing MPD to a new version for no other reason than to

conform to this specification may choose the version number based on its previous version

number or not, as long as it follows the version number syntax.

4.2.2 URI Scheme for MPDs

To facilitate MPD sharing and reuse the assignment of a URI (Uniform Resource Identifier) to

each MPD is essential.

[Rule 4-5.1] Every MPD MUST be assigned a valid http URI.

This specification follows [RFC3986-URI], which defines the syntax and format for a URI.

However, this specification also restricts an MPD URI to a URL and does not allow a URN

(Uniform Resource Name) to be assigned to an MPD.

Here is a typical example of an http URI:

 http://www.abc.org/niem-iepd/order/2.1.2rev3/

Note that [Rule 4-5.1] explicitly states that a URI assigned to an MPD must be valid. This

means that the person or organization assigning the URI either is the registrant of the domain

name, or has authority from the registrant to assign this URL as an MPD URI. In the example

above, www.abc.org is the domain name (between the second and third "/"). There is no

requirement for a URL assigned to an MPD to resolve to any particular Internet resource or to

resolve at all. However, it is always good practice for such a URL to resolve to the resource it

represents, the directory it resides in, or to documentation for that resource. See

http://www.w3.org/Provider/Style/URI.html

The MPD version number is essential to its unique identification. Incorporation of the version

number within the MPD URI provides a simple visual (as well as machine readable) means of

identifying one of the most fundamental relationships between MPDs, i.e., that one is a different

version of another.

http://www.example.org/niem/iepd/warning-order/2.1.2rev3
http://www.abc.org/
http://www.w3.org/Provider/Style/URI.html

NIEM Model Package Description (MPD) Specification

30

[Rule 4-5.2] The URI for an MPD MUST end in its version number.

Another advantage to this technique is that different versions of an MPD will generally group

together in a standard sorted ordering. (Of course, this assumes that a related family of MPDs

follows the same URI scheme.)

And finally, note that mpd-catalog.xsd defines a mandatory attribute for both the mpdURI

and the mpdVersionID. Since the ending string of an MPD URI must be its version ID, then

this means that the catalog duplicates the MPD version ID in two locations. This is by design.

You will discover in Section 6.1 MPD File Name Syntax that MPD file name syntax also

intentionally duplicates the catalog mpdName and mpdVersionID. There are two reasons

for this design. First, software tools are expected to build and process MPD catalogs. Instead of

forcing tool developers to parse the MPD URI just to retrieve the version ID, the catalog

provides a separate mpdVersionID attribute. Second, duplication of key metadata in URIs

and file names facilitates faster visual recognition of an MPD, rather than requiring that a user

open an its archive, open its catalog.xml file, and scan its content just to locate MPD name

or version ID.

4.2.3 URI Scheme for MPD Artifacts

Given the URI for an MPD, a URI exists for each artifact in that MPD. Again, this specification

follows [RFC3986-URI] and employs a fragment identifier to designate an artifact URI.

The mpd-catalog.xsd schema in Appendix A: MPD Catalog Schema declares an id

attribute of type xsd:ID that is required for use in FileType and FileSetType; optional in

FolderType. Within mpd-catalog.xml an MPD author must assign a locally unique id

value to each artifact and artifact set of the MPD. A globally unique URI for an artifact is the

concatenation of the MPD URI with "#" followed by the id value of the artifact or artifact set.

Since every MPD must have a URI, and an MPD catalog must list all artifacts contained in the

MPD, and each artifact must be assigned a locally unique id value, then each MPD artifact has a

globally unique URI that can be referenced from other external resources as needed. The

following rules concerning an artifact id apply:

[Rule 4-6] Each file artifact in an MPD MUST have a corresponding File

element in its mpd-catalog.

[Rule 4-7] Each file set artifact in an MPD MUST have a corresponding FileSet

element in its mpd-catalog. This FileSet element must identify each file artifact

that is a member of that file set artifact.

These rules and the catalog schema specified in Appendix A: MPD Catalog Schema require

that each individual file artifact and each set of file artifacts grouped for a particular purpose

must be identified in the catalog. This is to facilitate automatic processing of the MPD by

software tools. Note that file subdirectories (or folders) are independent of file set grouping.

Each file artifact can be identified in one and only one subdirectory (or folder) by its relative

NIEM Model Package Description (MPD) Specification

31

path name and file name. However, each file artifact can be a member of multiple file set

artifacts. Therefore, while it is possible to associate a file set artifact with a single subdirectory

within an MPD, it is not required.

Also note that the Folder element in Appendix A: MPD Catalog Schema is available to

represent subdirectories in MPDs. This allows an XSLT to generate a catalog index that can

display subdirectories as needed. However, operating system subdirectories are not authoritative

for file artifact and file set organization. For this reason the Folder element contains an

optional id attribute, a required relativePathName attribute, but no URI attributes that

could enable file grouping.

[Rule 4-8] Each artifact identified in the mpd-catalog MUST be assigned an id in

the format of an NCName (Non-Colonized Name) as defined by [W3-XML-

Namespaces]. This is required for both File and FileSet artifacts.

By the rules of [W3-XML], the value of each id attribute (which is of type xsd:ID) must be

locally unique within the mpd-catalog.xml file. However, globally unique URIs are

required to identify and reference artifacts between MPDs. To facilitate references from one

MPD catalog to another, the following rule applies:

[Rule 4-9] A URI reference to an individual MPD artifact from another resource

is the concatenation of

• The URI of the MPD that contains the artifact.

• The crosshatch or pound character ("#").

• A fragment identifier that is the locally unique id of the artifact within the

mpd-catalog of the MPD itself.

Example of an artifact URI:

http://www.abc.org/niem-iepd/order/2.1.2rev3/#a552

To illustrate a typical scenario for using this URI, a developer can build an IEPD that

contains a schema artifact to which (within the catalog) he assigns:

id="x25" (a locally unique id within the IEPD catalog)

If this schema artifact is an exact duplicate of the a552 artifact from the published

MPD whose URI is

http://www.abc.org/niem-iepd/order/2.1.2rev3/

then the developer can optionally assign the following attribute to this artifact's catalog

entry:

externalURI=

"http://www.abc.org/niem-iepd/order/2.1.2rev3/#a552"

Additional externalURI attributes can be assigned to this artifact if the author knows

of other reuses of this same artifact in other MPDs.

NIEM Model Package Description (MPD) Specification

32

4.2.3.1 Compact URIs (CURIEs)

In order, to simplify creation and human review of an MPD catalog that will likely contain many

long URI strings, this specification allows the optional use of a safe CURIE [W3-CURIE-

Syntax]. A CURIE is a compact URI that employs a prefix for a URI similar to the way

namespace prefixes are used in XML Schema. A safe CURIE encapsulates a CURIE within

square brackets ("[" and "]") to ensure machine readability where it might otherwise be

impossible to disambiguate between a CURIE and a URI. Within an mpd-catalog.xml

artifact, a CURIE may optionally be used anywhere a URI is required.

Following the lead of XML Schema, to employ a CURIE, ensure that a unique prefix has been

declared in the Catalog element (the root element of the catalog artifact) using xmlns. This

prefix can now be used to reduce long URI strings that contain the leading string represented by

the prefix. A simple example follows.

Given the following sample mpd-catalog requirement for an XML attribute that contains a long

URI:

ca:externalURI="http://www.organizational-iepds.any-company-

 inc.com/niem-iepd/codes/1.1.5rev6/#code-list33"

Within the Catalog element (among other namespaces) use xmlns to declare prefix ab (for

example):

 <ca:Catalog

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ca="http://reference.niem.gov/niem/resource/mpd/

 catalog/1.0/"

xmlns:ab="http://www.organizational-iepds.any-company-

 inc.com/niem-iepd/codes/1.1.5rev6/" >

With this declaration, and using a safe CURIE, the previous ca:externalURI attribute

becomes:

 ca:externalURI="[ab:#code-list33]"

Note that when using this technique it is very easy to inadvertently insert errors into URI references

by dropping or adding characters. When applying safe CURIEs, be careful to ensure that string

breaks in URIs are correct (at all locations!) so that the original URI results when the prefix is

replaced to recompose the URI.

4.2.3.2 MPD Artifact URIs Are Not NIEM Namespaces

URI does not have the same meaning as namespace. Do not rely on namespaces for artifact

URIs. Recall that the namespaces used in a schema subset derived from a NIEM release are

identical to the namespaces of the release itself. Furthermore, an IEPD or an EIEM may contain

multiple subsets. The non-uniqueness of NIEM namespaces implies that they cannot be used as

URIs for MPD artifacts.

[Rule 4-10] NIEM namespaces MUST NOT be used as URIs for MPD artifacts.

NIEM Model Package Description (MPD) Specification

33

4.2.4 Artifact Vocabularies: Nature and Purpose

In order for software tools to unambiguously understand and process MPD artifacts, NIEM

specifies a formal vocabulary. Each term in the vocabulary is identified by URI. The current

vocabularies declare terms for both the nature and purpose of an artifact. The nature of an

artifact identifies its file type; the purpose of an artifact identifies what it is used for. These

vocabularies will likely expand when new NIEM requirements and specifications demand

additional terms. Furthermore, other vocabularies beside nature and purpose may become

necessary in the future.

Definition: nature – An indication of the type of an MPD artifact. This further

indicates how it should be processed by software tools.

A nature [W3-AssocResourcesNS] of an artifact specifies fundamental classification of that

resource. Often the nature of a document is expressed in an informal manner. For example,

"that's an XML Schema", or "that's an HTML document", or "that's an XML DTD". These

phrases are identifying the nature of those documents. The nature of an artifact is an indication

of its file type. However, it is important to note that the nature of an artifact is usually but not

required to be consistent with its file extension.

Definition: purpose – A property of an MPD artifact that indicates its usage or

function. This determines what to do with this artifact and/or how it should be

processed by software tools.

A purpose [W3-AssocResourcesNS] is a property of an artifact that conveys its intended usage.

Purpose is used in conjunction with nature to ensure that a processor or tool will know exactly

what to do with an MPD artifact. For example, two related MPD artifacts might have natures

indicating they are both schemas, but the purpose property of each can indicate that one is part of

a schema subset, while the other is an extension schema.

Artifact natures and purposes may have many relationships. For example, the Nature and

Purpose Hierarchies at the end of Appendix G: MPD Lexicon (Nature and Purpose)

indicates that natures are organized into a hierarchical class diagram of is-a (sub-class)

relationships; similarly, purpose properties can be sub-properties of one another. W3C Web

Ontology Language (OWL) [W3-OWL] and the language from which it is derived, the W3C

Resource Description Framework (RDF) [W3-RDF], are well-suited for precisely defining

vocabularies and their associated relationships. For example, the Dublin Core Metadata

Initiative uses RDF to specify its library science metadata vocabularies (See

http://dublincore.org/schemas/rdfs/).

Note that the use of OWL to specify the semantics of these vocabularies does not require that

NIEM users have in depth knowledge of OWL. It is only important to understand the URI

strings (i.e., values in rdf:about attributes) for the terms and their corresponding definitions in

the OWL schemas that define the vocabularies. These URI strings are simply used to identify

the nature and purpose values for artifacts listed in an MPD catalog. However, maintaining the

vocabulary in OWL ensures the vocabulary can be easily extended with minimal impact to

previous versions. It can also be published in a standard form that can be consistently interpreted

by tools that must process MPDs and their associated artifacts.

http://dublincore.org/schemas/rdfs/

NIEM Model Package Description (MPD) Specification

34

Appendix G: MPD Lexicon (Nature and Purpose) contains the normative specification for

both vocabularies. This appendix also illustrates nature and purpose in hierarchical formats.

Through the use of URIs, URI fragments, nature (classes), and purpose (relationship properties),

the structure and content of a complete MPD can be represented with all its artifacts in a form

suitable for software tools. This representation accounts for (with relativePathName), but is

independent of, the directory organization of the MPD.

Figure 4-2 below, depicts the respresentation of a few artifacts in an example IEPD. The IEPD

is represented by the red circle in the upper left corner. Its artifacts are the blue (file sets) and

green (files) circles.

NIEM Model Package Description (MPD) Specification

35

NIEM Model Package Description (MPD) Specification

36

Figure 4-2. An example of IEPD representation (abbreviated).

Note that this figure represents an abbreviated version (only some of the artifacts are included) of

the sample IEPD catalog illustrated in Appendix C: Sample MPD Catalog Instance.

Regardless of pathname in the operating system directory structure, artifacts attached directly to

the MPD (in this case, IEPD) are said to reside in the root of the MPD, whereas set members

reside within their respective sets.

4.2.5 Wantlists

A NIEM subset is often associated with a NIEM wantlist. A wantlist is an abbreviated

representation of a NIEM schema subset, and identifies only the data components a user selected

NIEM Model Package Description (MPD) Specification

37

(as requirements) to build that subset. However, there are usually a number of additional data

components that the user selections are dependent upon and therefore must be added to construct

the complete schema subset. For example, a user may decide that he/she requires and therefore

select nc:Person. In this case, the wantlist will only contain that component, but the

associated subset must contain both nc:Person and nc:PersonType. A software tool that

understands how to process NIEM subsets and wantlists (such as the NIEM Schema Subset

Generator Tool – SSGT) will ensure correct correlation between a wantlist and a subset.

Definition: wantlist – An XML document that represents a NIEM schema subset.

A NIEM wantlist identifies the data component requirements declared by the

author of a subset; it does not identify the data component dependencies required

to reconstitute the complete subset. The complete subset can be computed with

the reference schema from which the subset was derived.

A wantlist is always associated with a subset schema set. Furthermore, a wantlist may also be

associated with a constraint schema set, because this is often built by starting with a subset. For

a simple IEPD, it is often trivial to identify a single subset with its corresponding wantlist within

the mpd-catalog.xml. On the other hand, the MPD Specification does not prevent

developers from building complex IEPDs that contain: (1) a base schema set supported by

multiple subsets and associated wantlists, and (2) multiple constraint schema sets, each supported

by multiple wantlists. As with other complex cases, the developer is responsible to clearly

document the associations between wantlists and the schemas they support. In order to maintain

a minimal degree of consistency for placement of a wantlist within a catalog (especially in the

case of simple IEPDs):

[Rule 4-11] A wantlist in an mpd-catalog.xml MUST be a member of the

base or constraint schema set it is associated with.

4.2.6 MPD Artifact Lineage

An important MPD business requirement is transparency of lineage. It must be possible to easily

identify the relationships that may exist among families, versions, adaptations, specializations,

generalizations, etc. of MPDs. The established URI scheme for MPDs and MPD artifacts as well

as the catalog help make this possible.

The catalog provides a Relationship element with three attributes (resourceURI,

relationshipCode, and descriptionText) to identify the pedigree of an MPD. There

are many ways that one MPD may relate to another. This makes it extremely difficult to specify

a fixed set of values that could objectively define an exact relationship between a pair of MPDs.

Therefore, the optional descriptionText attribute is provided to further explain the nature of

any of the eight relationshipCode values available (version_of, specializes,

generalizes, deprecates, supersedes, adapts, conforms_to, updates). In some

cases, the value of relationshipCode may be generic enough to require a more detailed

explanation in descriptionText (for example, if the value is "adapts").

The catalog also enables an MPD author to record a fine-grained pedigree between MPDs when

reusing artifacts from other MPDs. By default each artifact identified in a catalog has a globally

NIEM Model Package Description (MPD) Specification

38

unique URI (using a fragment reference) that can refer to it. An MPD author signifies reuse of a

given artifact by entering the URI for that artifact in the optional externalURI attribute within

the File element. Use of the externalURI for a given artifact does not preclude the

mandatory requirement to assign a locally unique id to that artifact (per [Rule 4-7] and [Rule 4-

8]).

Note that some MPDs are designed for more extensive reuse than others. For example, many

IEPDs are expected to reuse an EIEM. In such cases, the catalogs for these IEPDs and the

corresponding EIEM may overlap in or duplicate a large number of metadata and references.

This is expected. The catalog contains many references to and semantics for artifacts and MPDs.

Correct and consistent use of these references and semantics will create networks of related

MPDs so that tools can automatically locate, parse, and process MPDs and their corresponding

artifacts as needed and when available in shared repositories.

4.3 Change Log

4.3.1 NIEM Releases, Core Updates, and Domain Updates

Although the version identifier is useful for a fast and visual indication of the state of an MPD

relative to others, it only provides a fairly generalized indication of the volume, complexity, and

impact of changes that have been applied since a previous version. Of course, a change log is

required to ensure a more specific accounting of changes from one version to another.

Once published, NIEM releases always exist. This ensures that IEPDs and EIEMs built from

them will always be stable, and may be updated to a new NIEM release only when convenient or

absolutely necessary to take advantage of new or modified data components. Though not

recommended, the NIEM program does not prohibit a developer from building an IEPD based on

a NIEM release that is older than the most current version. There may be potential

disadvantages related to interoperability levels achievable with others developing to the latest

release. Nonetheless, an older version might meet the business needs of a particular organization

quite well.

In spite of this built-in stability, the NIEM architecture is designed to evolve as requirements

change. New versions of reference schema sets such as NIEM releases, core updates, and

domain updates can have significant impacts on future IEPDs and EIEMs. Developers must

understand in detail how changes will affect their IEPD and EIEM products and the tools used to

build them. To work effectively, tools for domain content development, impact analysis,

migration between releases, etc. must be able to digest formal change logs. A formal change log

is also essential to efficiently process and integrate new and changed content into NIEM for new

releases, and to simultaneously maintain multiple versions of NIEM for users. All of the

foregoing reasons dictate that NIEM require a normative change log for reference schema sets.

[Rule 4-12] Every MPD that is a reference schema set (i.e., NIEM releases, core

updates, and domain updates) MUST contain an XML change log artifact that:

NIEM Model Package Description (MPD) Specification

39

• Validates with the NIEM change log schemas (mpd-changelog.xsd and

niem-model.xsd).

Note: These are the base filenames; the actual filenames also contain a version

number. For example: mpd-changelog-1.0.xsd is the current version.

• Records changes to previous reference schemas that this MPD represents.

• Bears the file name "changelog.xml".

• Resides in the root directory of the MPD.

The current version of mpd-changelog.xsd can be found at:

 http://reference.niem.gov/niem/resource/mpd/changelog/

The current version of niem-model.xsd which describes the NIEM conceptual model can be

found at:

http://reference.niem.gov/niem/resource/model/

Since the schemas are the authority for a release or update and because almost all tool support

depends on the schemas, the change log is only designed to audit transactional change to the

schemas in the reference set. There is no provision for logging changes to support

documentation or other non-schema artifacts. Non-schema changes are handled non-normatively

in the form of release notes.

4.3.2 IEPDs and EIEMs

IEPD and EIEM change log requirements are less strict and are not required to conform to the

naming and schema specifications in [Rule 4-11]. However, a change log is still required.

[Rule 4-13] Every MPD that is an IEPD or EIEM MUST contain a change log

artifact that:

• Records changes to previous IEPD or EIEM schemas that this MPD represents.

• Begins with the substring "changelog".

• Resides in the root directory of the MPD.

This rule does not specify the format for an IEPD or EIEM change log. This is left to the

discretion of the author. While use of mpd-changelog.xsd is encouraged for IEPD and

EIEM schemas, it is not required. Relaxing the change log format encourages and facilitates

easier and more rapid development. IEPDs and EIEMs are developed by a variety of NIEM

domains, organizations, and users; and they are intended to specify implementable exchanges.

As a result, IEPDs and EIEMs usually contain many documentation artifacts as well as various

machine readable artifacts in various formats. A consistent standard change log for these

artifacts is very difficult to specify strictly.

http://reference.niem.gov/niem/resource/mpd/changelog/
http://reference.niem.gov/niem/resource/model/

NIEM Model Package Description (MPD) Specification

40

The initial version of an IEPD or EIEM would not likely require a change log. However, for

consistency of validation and to help facilitate automatic processing of IEPDs and EIEMs by

tools:

[Rule 4-14] The initial version of an IEPD or EIEM MUST contain a change log

artifact with at least one entry for its creation date.

Finally, if the mpd-changelog.xsd specification is used for IEPD/EIEM schema changes,

then it is potentially possible that such an MPD will need a second change log if the author wants

to accommodate documentation or other changes not related to schemas (since mpd-

changelog.xsd cannot be extended to accommodate such changes). If this is the case, then

the following rule applies:

[Rule 4-15] If an IEPD or EIEM contains more than one change log artifact, then

each change log artifact MUST:

• Have a file name that begins with the substring "changelog".

• Reside in the MPD root directory.

4.4 Master Document

A master document is only required for IEPDs and EIEMs since these MPDs are allowed the

greatest design flexibility, can be developed and implemented different ways, and are not

centrally managed. On the other hand, releases and domain updates have fairly restrictive rules

to obey, standard documentation for how to use them, and are centrally managed.

[Rule 4-16] An IEPD or an EIEM MUST contain a master document located in

the MPD root directory whose filename begins with the substring "master-

document".

The master document may replicate some of the metadata in the mpd-catalog. However, the

mpd-catalog is intentionally designed to be efficient, easily to parse, and minimal. It is intended

for search, discovery, registration, and Web page generation, and not to support various types of

detailed technical prose often required for human understanding.

The primary purposes of the master document include:

 To help facilitate understanding and reuse of IEPDs and EIEMs.

 To ensure that fundamental and detailed business-level information about an IEPD or

EIEM are documented for human understanding.

 To ensure an author has considered and conveys such fundamental information.

 To provide an initial source within an IEPD or EIEM for human consumable

documentation (similar to a "readme" file) and/or references to other business or

technical documentation needed for understanding.

NIEM Model Package Description (MPD) Specification

41

The master document is not intended to be the only source of written documentation for an MPD

(though it can be). It is expected to be the initial resource that references and coordinates all

others whether physically present in the MPD or linked by reference. Consider the master

document to be similar to a "readme" file.

Many organizations have their own customized formats and operating procedures for

documenting their work and products. This specification does not attempt to standardize master

document format or layout. Only the file name and relative path within the MPD are strictly

specified. The following section will also describe in general terms minimal content that should

be in the master document. Adherence to such a requirement is certainly a subjective judgment.

4.4.1 Master Document Content

This section is neither a cookbook nor a normative specification for a master document. It

simply suggests typical topics that a master document should or might address, and provides

some non-normative guidance.

The master document should help another user or developer to understand the content and use of

an IEPD or EIEM, as well as determine potential for reuse or adaptation. It should describe what

implementers need to understand and what the author considers is important to understanding an

IEPD or EIEM. There is no limit or constraint on its content.

At a minimum, the master document should contain several fundamental elements of information

about the MPD:

 Purpose of this MPD.

 Scope of its deployment, usage, and information content.

 Business value and rationale for developing it.

 Type of information it is intended to exchange (in business terms).

 Identification of senders and receivers (or the types of senders and receivers).

 Typical interactions between senders, receivers, and systems.

 References to other documentation within the MPD, and links to external documents that

may be needed to understand and implement it.

[Rule 4-17] A NIEM IEPD or EIEM master document SHOULD (at a minimum)

describe the MPD purpose, scope, business value, exchange information,

senders/receivers, interactions, and references to other documentation.

MPD documentation types and formats will vary with the methodologies and tools used to

develop them. Most of this documentation will likely be typical of that generated for data-

oriented software projects. Some documentation may only require sections in the master

document. Other documentation may be more suitable as separate artifacts that are referenced

and explained by a section in the master document (such as diagrams, large tables, data

dictionaries, test results/reports, etc.). The following are some common examples of sections in

or separate artifacts associated with the master document:

NIEM Model Package Description (MPD) Specification

42

 Use cases

 Business processes

 Business requirements

 Business rules

 Metadata security considerations

 Domain model design specifications and documentation and/or diagrams

 Data dictionary

 Testing and conformance

 Development tools and methodologies used

 Implementation guidance (An IEPD is meant to be implemented, so this section is very

important, particularly in the case of a complex IEPD that uses multiple subsets,

exchange schemas, and/or IEP root elements.)

o Security considerations (for protecting sensitive or classified information)

o Privacy considerations (for example, Personal Identifiable Information or PPI)

o Types of implementation

o If an IEPD employs multiple subsets (either from the same release or from

different releases):

 Where and how are these used?

 What are the caveats regarding duplicative data components?

 How are these coordinated in the implementation?

o If an IEPD employs multiple exchange schemas and/or exchange schemas with

multiple root elements:

 What is the purpose of each (exchange and root) and when is it used?

 How are these coordinated during the runtime preparation and

transmission of IEPs?

Authors are also encouraged to include an executive summary, especially for particularly lengthy

master documents.

5 Optional MPD Artifacts

Aside from the required artifacts, MPD content is relatively flexible. A variety of other optional

documentation files may be incorporated into an MPD. When applicable, these may include (but

are not limited to) files that describe or explain:

 Implementation details (hardware, software, configuration, etc.)

 Use of multiple root elements

NIEM Model Package Description (MPD) Specification

43

 Use of multiple subsets or mixed releases

 How to use/reuse an MPD for various purposes (such as Web Services)

 Rationales and/or business purposes

In addition to documentation artifacts, a variety of other optional files can be added to an MPD

to facilitate tool support and make reuse, adaptation, and/or implementation easier. These are

often files that are inputs to or outputs from software tools. Examples include content diagrams,

content models in tool-specific formats, and business rules (either formal or informal

representations).

Another optional artifact that is encouraged, especially for IEPDs, is a conformance report or

other evidence of quality. In the future, as NIEM processes and tools mature, a conformance and

quality reports and a corresponding certificate may become required artifacts. For now,

inclusion of a conformance report is at the discretion of the author or sponsor. Though clearly,

such reports can only increase confidence in MPDs that contain them.

An MPD author may include any files believed to be useful to understand, implement, reuse,

and/or adapt an MPD. However, [Rule 4-6] always applies – any file included as an artifact in

an MPD must also be identified with an entry in the mpd- catalog.

An MPD of relatively simple content and scope may only need to contain the minimum

mandatory artifacts required by this specification in order to understand and implement it. (See

Appendix F: MPD Artifacts for a listing of the mandatory and optional artifacts for each type

of MPD.)

Files vary widely in format and are often specific to the tools an author uses to parse, consume,

or output them. Therefore, if tool-specific files are included in an MPD, it is also a good practice

to include copies of those files in formats that display with standard Web browsers or other cost-

free, publicly available viewing tools. Common formats include, but are not limited to ASCII

text, CSV, HTML, XHTML, JPG, GIF, PNG, and PDF. This guidance is intended to encourage

and facilitate maximal sharing and distribution of MPDs; it does not prohibit and is not intended

to discourage the inclusion of other file formats.

In particular, this specification does not discourage use of Microsoft (MS) file formats for

documentation and other optional artifacts. A number of MS Office products are commonly

used in most large organizations. Furthermore, viewers are publicly available for many MS

products, including Word (DOC), Excel (XLS), PowerPoint (PPT), Access (MDB), and Visio

(VSD). (See http://office.microsoft.com/en-us/downloads/office-online-file-converters-and-

viewers-HA001044981.aspx)

6 Directory Organization, Packaging, Other Criteria

An MPD is a logical set of electronic files aggregated and organized to fulfill a specific purpose

in NIEM. Directory organization and packaging of an MPD should be designed around major

themes in NIEM: reuse, sharing, interoperability, and efficiency.

This rule is also applicable to all MPDs:

http://office.microsoft.com/en-us/downloads/office-online-file-converters-and-viewers-HA001044981.aspx
http://office.microsoft.com/en-us/downloads/office-online-file-converters-and-viewers-HA001044981.aspx

NIEM Model Package Description (MPD) Specification

44

[Rule 6-1] An MPD is packaged as a single compressed archive of files that

represents a sub-tree of a file system in standard [PK-ZIP] format. This archive

MUST preserve and store the logical directory structure intended by its author.

MPD NIEM schema artifacts must be valid for both XML Schema and NIEM:

[Rule 6-2] Within an MPD archive, all XSD and XML artifacts MUST be valid

against and follow all rules for their respective [NIEM-NDR] conformance

targets (i.e., subset, constraint, extension, exchange, reference schemas, and XML

instances); this includes being well-formed and valid XML Schema documents.

NIEM releases, core updates, and domain updates follow a relatively consistent approach to

directory organization [NIEM-DomainUpdate]. But there are many ways to organize IEPD and

EIEM directories that may depend on a number of factors including (not limited to) business

purpose and complexity. For this reason, strict rules for IEPD and EIEM directory structure are

difficult to establish. Therefore, IEPD and EIEM authors may create their own logical directory

structures. However, for consistency and efficiency:

Definition: MPD root directory – The top level file directory relative to all

MPD artifacts and subdirectories.

[Rule 6-3] An MPD archive MUST uncompress (unzip) to a one and only one

MPD root directory.

[Rule 6-3] ensures that:

 Unpacking an MPD archive will not scatter its contents on a storage device.

 A common starting point always exists to explore or use any MPD.

 mpd-catalog and change log artifacts will always be found in the MPD root directory (as

a result of [Rule 4-1] and [Rule 4-12]).

6.1 MPD File Name Syntax

As previously stated, the MPD Specification is intended to facilitate tool support for processing

MPDs. Given a tool must process an MPD, providing it basic information about the MPD as

early as possible will help to reduce processing time and complexity. So, if the class and version

of an MPD archive could be easily identified by its file name, then a tool would not have to

immediately open the archive and process the mpd-catalog just to determine this information. Of

course, ultimately, to do anything useful, a tool will have to open the MPD archive and process

its mpd-catalog. However, a standard file name syntax would allow a tool to search through a

set of MPD archives to find a particular MPD name, version, or class without having to open

(unzip) each. The following rules apply:

NIEM Model Package Description (MPD) Specification

45

[Rule 6-4] An MPD archive file MUST use file name syntax defined by the

regular expression:

 mpd-filename ::= name '-' version '.' class '.zip'

 Where:

 name ::= alphanum ((alphanum | special)* alphanum)?

 alphanum ::= [a-zA-Z0-9]

 special ::= '.' | '-' | '_'

 version ::= digit+ ('.' digit+)* (status digit+)?

 digit ::= [0-9]

 status ::= 'alpha' | 'beta' | 'rc' | 'rev'

 class ::= 'rel' | 'cu' | 'du' | 'iepd' | 'eiem'

All alpha characters SHOULD be lower case to reduce the risk of complications

across various file systems. See [Rule 4-3] for an explanation of the status

options.

(The regular expression notation used above is from XML 1.0 (Fifth Edition):

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation)

Obviously, the set of class values corresponds to release, core update, domain update, IEPD, and

EIEM respectively. A valid IEPD file name corresponding to the example in Appendix C:

Sample MPD Catalog Instance would be: Planning_Order-1.0.3rev2.iepd.zip

Checking this Appendix you will find that this example obeys the following two rules:

[Rule 6-5][Rule 6-5] Within an MPD, the <name> and <version> substrings

in the file name MUST match exactly the values for attributes mpdName and

mpdVersionID within its mpd-catalog.xml artifact.

[Rule 6-6] Within an MPD, the <class> substring in the file name MUST

correctly correspond to the value for the attribute mpdClassCode within mpd-

catalog.xml. Correct correspondence is:

IF file name <class> = THEN mpd-catalog.xml mpdClassCode =

rel release

cu core-update

du domain-update

iepd iepd

eiem eiem

NIEM Model Package Description (MPD) Specification

46

In HTTP-based Web Services environments, the MIME type designation of a MPD archive is

important to facilitate processing by service consumers.

[Rule 6-7] When represented on the Internet, an MPD archive SHOULD use the

following MIME Type:

 application/zip+<class> where

 <class> is one member from the set {rel, cu, du, iepd, eiem}

Use of the generic zip MIME type application/zip is allowed, but

discouraged. No other MIME types are allowed when representing MPD

archives.

6.2 Artifact Links to Other Resources

The [NIEM-NDR] requires that each xsd:import in a NIEM schema contain a

schemaLocation attribute with either an absolute or relative path reference that resolves to

the correct imported schema. However, this specification restricts an MPD import to a relative

path reference that resolves to the correct schema within the MPD itself. It is important to

understand that the URI scheme previously discussed in Section 4.2.3 URI Scheme for MPD

Artifacts should be used only to identify relationships among and provide source links to

external schemas being reused. It is not sufficient to allow references or links to such schemas

stand in for a physical copy.

Regardless of references to external sources or internal MPD directory organization, each

schema xsd:import must adhere to the following rule:

[Rule 6-8] Within an MPD archive, the value of each xsd:import

schemaLocation attribute MUST be a relative path reference that resolves to

the correct schema within the sub-tree.

The implication of this rule is a guarantee that all schema artifacts necessary to define, validate,

and use an MPD are physically present within that MPD without requiring modifications to

xsd:import schemaLocation attributes within schemas. In accordance with the [NIEM-

NDR], if MPD schemas are moved to an operational environment for implementation,

validation, or other purposes, then absolute references may replace relative path references when

needed. When absolute references to Internet resources are required:

[Rule 6-9] Absolute references to Internet resources MUST use a well-known

transfer protocol (http, https, ftp, ftps) and MUST resolve (If applicable,

documentation that describes how to resolve with security, account, and/or

password issues MUST be included).

Releases, core updates, and domain updates must adhere to packaging rules primarily to enable

development tools to process them consistently and efficiently. The NIEM PMO controls the

format and documentation for these MPDs and publishes them at http://release.niem.gov/niem/.

However, many different organizations author IEPDs and EIEMs. As such, they may be

http://release.niem.gov/niem/

NIEM Model Package Description (MPD) Specification

47

distributed, published in repositories (possibly to a limited community), and reused by others.

Furthermore, EIEMs are the basis for families of IEPDs. Therefore, it is important that both of

these MPD classes are well documented for understanding and use.

[Rule 6-10] A published IEPD MUST contain all documents necessary to

understand it and allow it to be implemented correctly. Within an MPD, the

<class> substring in the file name MUST correctly correspond to the value for

the attribute mpdClassCode within mpd-catalog.xml. Correct

correspondence is:

IF file name <class> = THEN mpd-catalog.xml mpdClassCode =

rel release

cu core-update

du domain-update

iepd iepd

eiem eiem

[Rule 6-11] A published IEPD MUST link (through its mpd-catalog) to any

EIEM it is based on. When represented on the Internet, an MPD archive

SHOULD use the following MIME Type:

 application/zip+<class> where

 <class> is one member from the set {rel, cu, du, iepd, eiem}

Use of the generic zip MIME type application/zip is allowed, but

discouraged. No other MIME types are allowed when representing MPD

archives.

The [NIEM-NDR] explains how NIEM employs a special type adaption mechanism to

encapsulate and use other standards (e.g., geospatial and emergency management standards) in

their native forms that are not NIEM-conformant. Other standards may use xsd:import

without requiring schemaLocation attributes (instead, relying only on the namespace). These

standards may also use xsd:include which is disallowed by NIEM. When standards external

to NIEM are required within NIEM MPDs, the following rule applies:

[Rule 6-12] Within an MPD archive, if non-NIEM-conformant schemas from

other standards are used and referenced within an MPD, then all xsd:import,

xsd:include, and xsd:redefine constructs used within those schemas

MUST be modified as needed to have a value for the schemaLocation

attribute that is a relative path reference that resolves to the correct schema within

the sub-tree.

NIEM Model Package Description (MPD) Specification

48

For the case of non-NIEM-conformant schemas, this rule ensures that all schemas (or

corresponding artifacts and namespaces) from other standards required for definition, validation,

and use of the MPD are present within the archive.

XML schemas are the heart of MPDs since they formally specify normative structure and

semantics for data components. However, in general, an MPD is a closed set of artifacts. This

means that all hyperlink references within artifacts should resolve to the appropriate artifact.

[Rule 6-13] Within any artifact of an MPD archive, any direct reference to

another resource (i.e., another artifact such as an image, schema, stylesheet, etc.)

that is required to process or display an artifact SHOULD exist within the archive

at the location specified by that reference.

This means that MPD artifacts, including documentation artifacts, should be complete. For

example, if an HTML document contains a hyperlink reference (href) to a schema (xsd) or

stylesheet (xsl) that is part of the MPD, then the schema file associated with that hyperlink

should be present within the MPD; likewise for a sourced (src) image. Authors should exercise

good judgment with this rule. For example, it does not require an MPD to contain copies of all

cited documents from a table of references if it contains hyperlinks to those documents. The key

operating words in this rule are: "another resource … required to process or display an artifact

SHOULD exist within the archive."

6.3 Duplication of Artifacts

Within an MPD, the replication of files or entire file sets should be avoided. However,

replication is allowed when a reasonable rationale exists. In some cases, file replication may

make it easier to use, validate, implement, or automatically process an MPD. For example,

multiple subsets may overlap with many identical schemas. Yet, it may be easier or even

necessary to allow this form of duplication to accommodate a validation tool, rather than

removing duplicate schemas, and forcing the tool to use the mpd-catalog to identify required

artifacts. mpd-catalog-1.0.xsd is designed to track duplicate artifacts (File or

FileSet), as well as, reference a single File artifact from multiple FileSet artifacts.

6.4 Non-normative Guidance for Directories

Aside from the rules above, this specification does not impose additional constraints on an IEPD

or EIEM author’s freedom to organize directory structure. This is why the mpd-catalog is

required to list every artifact, along with its locally unique identifier, relative path name, nature,

and purpose. This enables a machine to find every artifact regardless of its location in an MPD

archive and know exactly what it is. The mpd-catalog artifact always takes precedence over the

directory structure of an IEPD or EIEM.

Non-normative guidance for directory structuring may be useful to authors for a relatively simple

IEPD or EIEM with a single subset, extension set, constraint set, and exchange schema set. The

following general guidance has been common practice for IEPD directories:

 Create a root directory for the IEPD from the name and version identifier of the IEPD.

For example "my-iepd-3.2.4rev2".

NIEM Model Package Description (MPD) Specification

49

 Per [Rule 4-1] and [Rule 4-12], mpd-catalog.xml and the change log (XML file

format is not required for IEPD or EIEM change logs) must reside in the root directory.

 Maintain XML stylesheets used with the mpd-catalog and change log in the MPD root

directory.

 Maintain each subset organized as generated by the Schema Subset Generation Tool

(SSGT). The reason for maintaining the SSGT grouping is that the SSGT ensures that all

xsd:import schemaLocation attributes contain relative path names that are

correctly coordinated with the directory structure.

 If derived from a schema subset, maintain the constraint schema set grouped as the subset

from which it was derived (for the same reason as above).

 Establish a subdirectory of the MPD root directory with the name "XMLschemas".

Within this subdirectory:

o Maintain each subset in a subdirectory with a name that contains the substring

"subset". Maintain and correlate a wantlist with the subset it represents. To

do so, change a wantlist filename if appropriate.

o Maintain each constraint schema set (or all constraint schemas if appropriate) in a

subdirectory with a name that contains the substring "constraint".

o Maintain each extension schema set (or all extension schemas if appropriate) in a

subdirectory with a name that contains the substring "extension".

o Maintain each exchange schema in a subdirectory with a name that contains the

substring "exchange".

 Maintain all documentation in a subdirectory of the MPD root directory with a name that

contains the substring "documentation". Create additional documentation

subdirectories inside this one as needed.

 Maintain all sample XML instances that validate to the schemas in a subdirectory of the

MPD root directory with a name that contains the substring "XMLsamples". This

subdirectory can also contain any XML stylesheets (XSL) used with the sample

instances.

 Maintain tool specific files (inputs and outputs) in a subdirectory of the MPD root

directory with a name that contains the substring "library".

The guidance above results in an IEPD directory structure illustrated below in Figure 6-1.

Obviously, there are many other ways to organize for more complex business requirements in

which multiple releases, subsets, constraint sets, core updates, and domain updates are employed

in a single IEPD.

NIEM Model Package Description (MPD) Specification

50

Figure 6-1. IEPD sample directory structure.

NIEM Model Package Description (MPD) Specification

 A-1

Appendix A: MPD Catalog Schema

mpd-catalog-1.0.xsd (version 1.0)

URI: http://reference.niem.gov/niem/resource/mpd/catalog/1.0/

Note: Download the latest text version of this file using its http URI above (also its target

namespace). Files in appendices are intended for browsing only; do not copy/paste for testing or

processing.

<?xml version="1.0" encoding="UTF-8"?>

<schema

 attributeFormDefault="qualified"

 elementFormDefault="qualified"

targetNamespace="http://reference.niem.gov/niem/resource/mpd/catalog/1.0/"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:ca="http://reference.niem.gov/niem/resource/mpd/catalog/1.0/"

 version="1.0">

 <annotation>

 <documentation>

 Model Package Description (MPD) Catalog;

 XML document element = Catalog;

 This schema defines the mpd-catalog.xml artifact

 for Model Package Descriptions (MPD) in NIEM.

 MPDs include:

 NIEM releases, core updates, domain updates,

 NIEM Information Exchange Package Documentation (IEPD),

 and NIEM Enterprise Information Exchange Models (EIEM).

 The purpose of this schema is to define/declare metadata

 for NIEM MPDs to search, discover, and process MPDs efficiently.

 Instances of this schema are not NIEM data exchanges. For

 this reason this schema is not NIEM conformant, even though

 type definitions and element/attribute declarations generally

 conform to NIEM NDR naming rules.

 </documentation>

 </annotation>

 <element name="Catalog" type="ca:CatalogType"/> <!-- Root element -->

<!-- Artifacts and structures === -->

 <complexType name="CatalogType">

 <sequence>

 <element ref="ca:Artifact" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="ca:Metadata" minOccurs="1" maxOccurs="1"/>

 </sequence>

 <attribute ref="ca:mpdURI" use="required"/>

 <attribute ref="ca:mpdClassCode" use="required"/>

 <attribute ref="ca:mpdName" use="required"/>

 <attribute ref="ca:mpdVersionID" use="required"/>

 <attribute ref="ca:descriptionText" use="optional"/>

 </complexType>

http://reference.niem.gov/niem/resource/mpd/catalog/1.0/

NIEM Model Package Description (MPD) Specification

 A-2

 <element name="Artifact" abstract="true"/>

 <element name="FileSet" type="ca:FileSetType"

substitutionGroup="ca:Artifact"/>

 <complexType name="FileSetType">

 <sequence>

 <element ref="ca:File" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute ref="ca:id" use="required"/>

 <attribute ref="ca:externalURI" use="optional"/>

 <attribute ref="ca:natureURI" use="required"/>

 <attribute ref="ca:purposeURI" use="required"/>

 <attribute ref="ca:descriptionText" use="optional"/>

 <attribute ref="ca:files" use="optional"/>

 </complexType>

 <element name="Folder" type="ca:FolderType"

substitutionGroup="ca:Artifact"/>

 <complexType name="FolderType">

 <attribute ref="ca:id" use="optional"/>

 <attribute ref="ca:relativePathName" use="required"/>

 <attribute ref="ca:descriptionText" use="optional"/>

 </complexType>

 <element name="File" type="ca:FileType" substitutionGroup="ca:Artifact"/>

 <complexType name="FileType">

 <attribute ref="ca:id" use="required"/>

 <attribute ref="ca:externalURI" use="optional"/>

 <attribute ref="ca:relativePathName" use="required"/>

 <attribute ref="ca:natureURI" use="required"/>

 <attribute ref="ca:purposeURI" use="required"/>

 <attribute ref="ca:descriptionText" use="optional"/>

 </complexType>

<!-- Metadata === -->

 <element name="Metadata" type="ca:MetadataType"/>

 <complexType name="MetadataType">

 <sequence>

 <element ref="ca:SecurityMarkingText" minOccurs="1" maxOccurs="1"/>

 <element ref="ca:CreationDate" minOccurs="1" maxOccurs="1"/>

 <element ref="ca:LastRevisionDate" minOccurs="0" maxOccurs="1"/>

 <element ref="ca:NextRevisionDate" minOccurs="0" maxOccurs="1"/>

 <element ref="ca:StatusText" minOccurs="0" maxOccurs="1"/>

 <element ref="ca:Relationship" minOccurs="0"

maxOccurs="unbounded"/>

 <element ref="ca:KeywordText" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="ca:DomainText" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="ca:PurposeText" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="ca:ExchangePatternText" minOccurs="0"

maxOccurs="unbounded"/>

NIEM Model Package Description (MPD) Specification

 A-3

 <element ref="ca:ExchangePartnerName" minOccurs="0"

maxOccurs="unbounded"/>

 <element ref="ca:AuthoritativeSource" minOccurs="1" maxOccurs="1"/>

 </sequence>

 </complexType>

 <element name="AuthoritativeSource" type="ca:AuthoritativeSourceType"/>

 <complexType name="AuthoritativeSourceType">

 <sequence>

 <element ref="ca:ASName" minOccurs="1" maxOccurs="1"/>

 <element ref="ca:ASAddressText" minOccurs="0" maxOccurs="1"/>

 <element ref="ca:ASWebSiteURL" minOccurs="0" maxOccurs="1"/>

 <element ref="ca:POC" minOccurs="1" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="POC" type="ca:POCType"/>

 <complexType name="POCType">

 <sequence>

 <element ref="ca:POCName" minOccurs="1" maxOccurs="1"/>

 <element ref="ca:POCEmail" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="ca:POCTelephone" minOccurs="1"

maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="SecurityMarkingText" type="string"

 default="unclassified"/>

 <element name="CreationDate" type="date"/>

 <element name="LastRevisionDate" type="date"/>

 <element name="NextRevisionDate" type="date"/>

 <element name="StatusText" type="string"/>

 <element name="Relationship" type="ca:RelationshipType"/>

 <element name="KeywordText" type="string"/>

 <element name="DomainText" type="string"/>

 <element name="PurposeText" type="string"/>

 <element name="ExchangePatternText" type="string"/>

 <element name="ExchangePartnerName" type="string"/>

 <element name="ASName" type="string"/>

 <element name="ASAddressText" type="string"/>

 <element name="ASWebSiteURL" type="anyURI"/>

 <element name="POCName" type="string"/>

 <element name="POCEmail" type="string"/>

 <element name="POCTelephone" type="string"/>

 <complexType name="RelationshipType">

 <attribute ref="ca:relationshipCode" use="required"/>

 <attribute ref="ca:resourceURI" use="required"/>

 <attribute ref="ca:descriptionText" use="optional"/>

 </complexType>

NIEM Model Package Description (MPD) Specification

 A-4

<!-- Primitives === -->

 <attribute name="id" type="ID"/>

 <attribute name="mpdURI" type="ca:URISimpleType"/>

 <attribute name="mpdClassCode" type="ca:MPDClassCodeSimpleType"/>

 <attribute name="mpdName" type="string"/>

 <attribute name="mpdVersionID" type="ca:MPDVersionIDSimpleType"/>

 <attribute name="externalURI" type="ca:URISimpleType"/>

 <attribute name="relativePathName" type="string"/>

 <attribute name="natureURI" type="ca:URISimpleType"/>

 <attribute name="purposeURI" type="ca:URISimpleType"/>

 <attribute name="descriptionText" type="string"/>

 <attribute name="files" type="IDREFS"/>

 <attribute name="resourceURI" type="ca:URISimpleType"/>

 <attribute name="relationshipCode" type="ca:RelationshipCodeSimpleType"/>

 <simpleType name="MPDClassCodeSimpleType">

 <restriction base="token">

 <enumeration value="release"/>

 <enumeration value="core-update"/>

 <enumeration value="domain-update"/>

 <enumeration value="iepd"/>

 <enumeration value="eiem"/>

 </restriction>

 </simpleType>

 <simpleType name="RelationshipCodeSimpleType">

 <restriction base="token">

 <enumeration value="version_of"/>

 <enumeration value="specializes"/>

 <enumeration value="generalizes"/>

 <enumeration value="supersedes"/>

 <enumeration value="deprecates"/>

 <enumeration value="adapts"/>

 <enumeration value="updates"/>

 <enumeration value="conforms_to"/>

 </restriction>

 </simpleType>

 <simpleType name="MPDVersionIDSimpleType">

 <restriction base="token">

 <pattern value="[0-9]+(\.[0-9]+)*((alpha|beta|rc|rev)[0-9]+)?"/>

 <minLength value="1"/>

 </restriction>

 </simpleType>

 <simpleType name="URISimpleType">

 <union memberTypes="anyURI ca:SafeCurieSimpleType"/>

 </simpleType>

 <simpleType name="SafeCurieSimpleType">

 <restriction base="string">

 <pattern value="\[(([\i-[:]][\c-[:]]*)?:)?.+\]"/>

 <minLength value="3"/>

 </restriction>

 </simpleType>

</schema>

NIEM Model Package Description (MPD) Specification

 B-1

Appendix B: MPD Catalog Data Dictionary
The following table is a data dictionary for the Appendix A: MPD Catalog Schema.

The Cardinality column lists the minimum and maximum cardinality for each element or

attribute in an MPD Catalog, where U = Unbounded. Grayed rows are the code values for the

attribute relationshipCode. Cardinality is not applicable to code values. Typical

cardinalities are interpreted as follows:

 Min, Max The associated element or attribute is …

 1, 1 required; not optional; one and only one is allowed

 1, U required; not optional; one or any number is allowed; repeatable

 0, 1 optional; zero or exactly one is allowed (0 or 1)

 0, U optional; zero or any number is allowed; repeatable

Name Definition Cardinality

Min, Max
Catalog A dataset that describes MPD artifacts and

metadata. (the root element)

1,1

id A locally unique (within an mpd-catalog file)

identifier for an MPD artifact or set of artifacts.

1,1

mpdURI A globally unique identifier (a URI) for an MPD. 1,1
mpdClassCode A type of MPD; values are drawn from the

following set: {release, core-update,
domain-update, iepd, eiem}

1,1

mpdName A label or title for an MPD. 1,1
descriptionText A statement that provides an explanation or

additional detail.

0,1

Artifact A file or file set in an MPD. 1,U
FileSet A set of artifacts that are grouped for a purpose. 0,U
File An electronic file stored on a computer system. 0,U
Folder A file directory in an MPD. 0,U
relativePathName A locally unique string that represents the location

of the file (including the file name) within an

MPD relative to the MPD root directory.

1,1

mpdVersionID An identifier that distinguishes releases of a given

MPD.

1,1

externalURI A globally unique identifier for an artifact in

another MPD that is reused by this MPD.

0,1

purposeURI A formal NIEM vocabulary term that defines the

usage of an MPD artifact.

1,1

natureURI A formal NIEM vocabulary term that defines the

file type of an MPD artifact.

1,1

files A list of local MPD file identifiers (id attributes

for File entries).

0,1

NIEM Model Package Description (MPD) Specification

 B-2

Name Definition Cardinality

Min, Max
SecurityMarkingText A label that defines how this MPD must be

handled or can be distributed to protect the

information it contains.

1,1

CreationDate A date this MPD was published. 1,1
LastRevisionDate A date this MPD was revised most recently

(i.e., CreationDate of previous version).

0,1

NextRevisionDate A projected date on which this MPD is expected

to be revised (i.e., an estimate).

0,1

StatusText A description of the current state of this MPD in

development; may also project future plans for the

MPD.

0,1

Relationship A reference to another MPD related to this MPD. 0,U
 resourceURI A globally unique identifier for the MPD that this

MPD relates to.

1,U

 relationshipCode A classification or reason for the connectedness

between this MPD and the resource referenced in

resourceURI. (See relationshipCode

enumerated values and applicability table

immediately following this table.)

1,U

 descriptionText A more detailed or specific explanation of the

relationship between this MPD and the resource

referenced in resourceURI.

0,U

KeywordText A common alias, term, or phrase that would help

to facilitate search and discovery of this MPD.

1,U

DomainText A description of the environment or NIEM

Domain in which this MPD is applicable or used.

1,U

PurposeText A description of the intended usage and reason for

which an MPD exists.

0,U

ExchangePatternText A description of a transactional or design pattern

used for this IEPD (generally, applicable to IEPDs

only).

0,U

ExchangePartnerName A name of an entity or organization that uses this

MPD.

0,U

AuthoritativeSource A set of metadata that describes the entity

responsible for configuration and change

management for this MPD.

1,1

 ASName A name for the current MPD authoritative source;

could be the author, creator, sponsor, etc.

(organization or person name).

1,1

 ASAddressText A description of the location of the authoritative

source for the MPD.

0,1

 ASWebSiteURL A URL for the Web site of the authoritative

source for the MPD.

0,1

NIEM Model Package Description (MPD) Specification

 B-3

Name Definition Cardinality

Min, Max
 POC A set of metadata used to contact the authoritative

source for an MPD.

1,U

 POCName A name for a person, position, or title. 1,1
 POCEmail An email address. 1,U
 POCTelephone A telephone number. 1,U

relationshipCode Applicable to

Value Definition IEPD EIEM CU DU Release

version_of A relationshipCode value for indicating that this

MPD is a different version of the MPD

referenced in resourceURI. This code value

is only needed in cases where significant name

changes might obscure the relationship to the

previous version. For example, NIEM Justice

4.1 is a version of GJXDM 3.0.3.

X X

generalizes A relationshipCode value for indicating that this

MPD is a generalization of the MPD referenced

in resourceURI. This value is the inverse of

specializes.

X

specializes A relationshipCode value for indicating that this

MPD is a specialization of the MPD referenced

in resourceURI. This value is the inverse of

generalizes.

X

supersedes A relationshipCode value for indicating that this

MPD replaces the MPD referenced in

resourceURI.

X X X X

deprecates A relationshipCode value for indicating that

content in this MPD is preferred over content in

the MPD referenced in resourceURI; and at

some time in the future will supersede the MPD

referenced in resourceURI

X X X X

adapts A relationshipCode value for indicating that this

MPD is an adaptation of the MPD referenced in

resourceURI.

X X

conforms_to A relationshipCode value for indicating that this

MPD conforms to the specification or standard

referenced in resourceURI.

X X X X X

updates A relationshipCode value for indicating that this

MPD is an incremental update to the resource

referenced in resourceURI. Used by a core

or domain update to identify the domain schema

in a NIEM release being incrementally updated

(not replaced).

 X X

NIEM Model Package Description (MPD) Specification

 C-1

Appendix C: Sample MPD Catalog Instance

mpd-catalog.xml (This example corresponds to this document, MPD Specification v1.1)

URI: http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

Note: Download the latest text version of this file using its http URI above. Files in

appendices are intended for browsing only; do not copy/paste for testing or processing.

This is a simple mpd-catalog instance that exercises some of the options mpd-catalog-1.0.xsd

allows. It was not necessarily constructed to be a complete MPD.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="./mpd-catalog.xsl"?>

<!-- This IEPD catalog instance is for MPD Specification v1.1.

It is a fictitious and abbreviated IEPD (NOT necessarily complete).

However, it illustrates use of various options in mpd-catalog-1.0.xsd;

including reuse of File elements with IDREFS in the "files" attribute,

use of both full URIs and safe CURIEs, full, Folders, various metadata,

references to external related MPDs and artifacts, etc. -->

<ca:Catalog

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ca="http://reference.niem.gov/niem/resource/mpd/catalog/1.0/"

 xmlns:p="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/purpose#"

 xmlns:n="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/nature#"

 xmlns:yy="http://my.iepd.program.org/aaa/"

 xmlns:zz="http://zoom.com/services/plan-order/"

 xsi:schemaLocation="http://reference.niem.gov/niem/resource/mpd/catalog/

 1.0/mpd-catalog-1.0.xsd"

 ca:mpdURI="http://myiepd.org/p-ord/1.5/"

 ca:mpdClassCode="iepd"

 ca:mpdName="Planning_Order"

 ca:mpdVersionID="1.5"

 ca:descriptionText="A Planning Order notifies subordinate agencies

 to initiate planning for contingency operations." >

 <ca:FileSet ca:id="base0"

 ca:externalURI="[yy:plnord/4.6/#b0]"

 ca:natureURI="[n:schema-set]"

 ca:purposeURI="[p:base-schema-set]"

 ca:descriptionText="Base schema set for IEPD Planning Order">

 <ca:File ca:id="w1"

 ca:relativePathName="./subset/wantlist1.xml"

 ca:natureURI="[n:niem-wantlist]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="my wantlist 1"/>

 <ca:File ca:id="s1"

 ca:relativePathName="./subset/niem/niem-core/2.0/niem-core.xsd"

http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

NIEM Model Package Description (MPD) Specification

 C-2

 ca:natureURI="[n:niem-subset-schema]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="niem core subset"/>

 <ca:File ca:id="e1"

 ca:relativePathName="./extension/ext1.xsd"

 ca:natureURI="[n:niem-extension-schema]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="Plan Order extension schema 1"/>

 <ca:File ca:id="e2"

 ca:relativePathName="./extension/ext2.xsd"

 ca:natureURI="[n:niem-extension-schema]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="Plan Order extension schema 2"/>

 <ca:File ca:id="e3"

 ca:externalURI="[zz:po8/1.0/#exten1]"

 ca:relativePathName="./extension/ext3.xsd"

 ca:natureURI="[n:niem-extension-schema]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="Plan Order extension schema 3"/>

 <ca:File ca:id="r1"

 ca:relativePathName="./exchange/myiepd.xsd"

 ca:natureURI="[n:niem-exchange-schema]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="exchange schema for Plan Order"/>

 </ca:FileSet>

 <ca:File ca:id="c0"

 ca:relativePathName="./mpd-catalog.xml"

 ca:natureURI="[n:niem-mpd-catalog]"

 ca:purposeURI="[p:catalog]"

 ca:descriptionText="MPD Catalog: identifies artifacts in Plan Order"/>

 <ca:File ca:id="cl"

 ca:relativePathName="./changelog.txt"

 ca:natureURI="[n:text]"

 ca:purposeURI="[p:changelog]"

 ca:descriptionText="History of changes to Planning Order"/>

 <ca:File ca:id="cs0"

 ca:relativePathName="./mpd-catalog.xsl"

 ca:natureURI="[n:xslt]"

 ca:purposeURI="[p:display]"

 ca:descriptionText="stylesheet displays mpd-catalog index + metadata"/>

 <ca:FileSet ca:id="s99"

 ca:externalURI="[zz:po6/2.2/#z55]"

 ca:natureURI="[n:file-set]"

 ca:purposeURI="[p:documentation]"

 ca:descriptionText="Additional documentation">

 <ca:File ca:id="h1"

NIEM Model Package Description (MPD) Specification

 C-3

 ca:relativePathName="./doc/1.htm"

 ca:natureURI="[n:html]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="supplemental doc 1"/>

 <ca:File ca:id="h2"

 ca:relativePathName="./doc/index.htm"

 ca:natureURI="[n:html]"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="supplemental doc 2"/>

 <ca:File ca:id="h3"

 ca:relativePathName="./doc/3.htm"

 ca:natureURI="[n:html]"

 ca:purposeURI="[p:subordinate-set-member]"

 ca:descriptionText="supplemental doc 3"/>

 <ca:File ca:id="h4"

 ca:relativePathName="./doc/4.htm"

 ca:natureURI="[n:html]"

 ca:purposeURI="[p:subordinate-set-member]"

 ca:descriptionText="supplemental doc 4"/>

 <ca:File ca:id="g5"

 ca:relativePathName="./doc/5.gif"

 ca:natureURI="[n:gif]"

 ca:purposeURI="[p:subordinate-set-member]"

 ca:descriptionText="supplemental doc 5"/>

 </ca:FileSet>

 <ca:File ca:id="br0"

 ca:externalURI="[yy:plnord/4.6/#ru1]"

 ca:relativePathName="./business-rules/rules0.sch"

 ca:natureURI="[n:schematron]"

 ca:purposeURI="[p:business-rules]"

 ca:descriptionText="Additional constraints on Plan Order instances"/>

 <ca:File ca:id="t4"

 ca:relativePathName="./test/test-summary.docx"

 ca:natureURI="[n:doc]"

 ca:purposeURI="[p:test-report]"

 ca:descriptionText="Test data and summary report for Plan Order"/>

 <ca:File ca:id="md0"

 ca:relativePathName="./master-document.docx"

 ca:natureURI="[n:doc]"

 ca:purposeURI="[p:master-document]"

 ca:descriptionText="Readme file for implementing Plan Order"/>

 <ca:FileSet ca:id="css1"

 ca:natureURI="[n:schema-set]"

 ca:purposeURI="[p:constraint-schema-set]"

 ca:descriptionText="constraint schema set 1"

 ca:files="e1 e2 r1 cs88" />

NIEM Model Package Description (MPD) Specification

 C-4

 <ca:FileSet ca:id="css2"

 ca:natureURI="[n:schema-set]"

 ca:purposeURI="[p:constraint-schema-set]"

 ca:descriptionText="constraint schema set 2"

 ca:files="cs91 e2 r1 s1" />

 <ca:File ca:id="cs88"

 ca:relativePathName="./constraint/nc-cs88.xsd"

 ca:natureURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/n

ature#niem-constraint-schema"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="Constrained niem-core 2.0"/>

 <ca:File ca:id="cs91"

 ca:relativePathName="./constraint/ext1-cs91.xsd"

 ca:natureURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/n

ature#niem-constraint-schema"

 ca:purposeURI="[p:set-member]"

 ca:descriptionText="Constrained extension 1"/>

<!-- Folders (directories) -->

 <ca:Folder ca:id="f0"

 ca:relativePathName="./"

 ca:descriptionText="ROOT"/>

 <ca:Folder ca:id="f1"

 ca:relativePathName="./subset/"

 ca:descriptionText="SUBSET"/>

 <ca:Folder ca:id="nc2"

 ca:relativePathName="./subset/niem/niem-core/2.0/"

 ca:descriptionText="NIEM CORE 2.0"/>

 <ca:Folder ca:id="f2"

 ca:relativePathName="./extension/"

 ca:descriptionText="EXTENSION"/>

 <ca:Folder ca:id="f3"

 ca:relativePathName="./exchange/"

 ca:descriptionText="EXCHANGE"/>

 <ca:Folder ca:id="f4"

 ca:relativePathName="./library/"

 ca:descriptionText="LIBRARY"/>

 <ca:Folder ca:id="f5"

 ca:relativePathName="./documentation/"

 ca:descriptionText="DOCUMENTATION"/>

 <ca:Folder ca:id="f6"

 ca:relativePathName="./xml-samples/"

 ca:descriptionText="SAMPLE INSTANCES"/>

 <ca:Folder ca:id="f7"

 ca:relativePathName="./doc/"

NIEM Model Package Description (MPD) Specification

 C-5

 ca:descriptionText="SUPPLEMENTAL DOCUMENTATION"/>

 <ca:Folder ca:id="f8"

 ca:relativePathName="./constraint/"

 ca:descriptionText="CONSTRAINT SCHEMAS"/>

 <ca:Folder ca:id="f9"

 ca:relativePathName="./business-rules/"

 ca:descriptionText="BUSINESS RULES"/>

 <ca:Metadata>

 <ca:SecurityMarkingText>Unclassified/public</ca:SecurityMarkingText>

 <ca:CreationDate>2009-02-16</ca:CreationDate>

 <ca:LastRevisionDate>2010-04-20</ca:LastRevisionDate>

 <ca:StatusText>

 implemented and operational in 25 of 50 states since 2009

 </ca:StatusText>

 <ca:Relationship ca:relationshipCode="adapts"

 ca:resourceURI="[zz:po6/2.2/]"

 ca:descriptionText="reuses one documentation set artifact"

/>

 <ca:Relationship

 ca:relationshipCode="adapts"

 ca:resourceURI="[zz:po8/1.0/]"

 ca:descriptionText="uses adapted extension schema" />

 <ca:KeywordText>program plan</ca:KeywordText>

 <ca:KeywordText>contingency</ca:KeywordText>

 <ca:KeywordText>planning</ca:KeywordText>

 <ca:DomainText>Logistics</ca:DomainText>

 <ca:DomainText>Emergency Management</ca:DomainText>

 <ca:PurposeText>intended to initiate execution of planning

cycles</ca:PurposeText>

 <ca:ExchangePatternText>query/response</ca:ExchangePatternText>

 <ca:ExchangePartnerName>FEMA</ca:ExchangePartnerName>

 <ca:ExchangePartnerName>NASCIO</ca:ExchangePartnerName>

 <ca:ExchangePartnerName>82d Abn Div</ca:ExchangePartnerName>

 <ca:AuthoritativeSource>

 <ca:ASName>FEMA</ca:ASName>

 <ca:ASAddressText>30 Dupont Cir, Wash DC,

12345,USA</ca:ASAddressText>

 <ca:ASWebSiteURL>http://www.fema.gov</ca:ASWebSiteURL>

 <ca:POC>

 <ca:POCName>John Smith</ca:POCName>

 <ca:POCEmail>john.smith@fema.gov</ca:POCEmail>

 <ca:POCTelephone>202-333-1234</ca:POCTelephone>

 </ca:POC>

 <ca:POC>

 <ca:POCName>FEMA, Office of the Chief Administrator</ca:POCName>

 <ca:POCEmail>OCA@fema.gov</ca:POCEmail>

 <ca:POCTelephone>888-333-5678</ca:POCTelephone>

 </ca:POC>

NIEM Model Package Description (MPD) Specification

 C-6

 </ca:AuthoritativeSource>

 </ca:Metadata>

</ca:Catalog>

NIEM Model Package Description (MPD) Specification

 D-7

Appendix D: Sample XSLT for an MPD Catalog Index

mpd-catalog.xsl (This example corresponds to this document, MPD Specification v1.1)

URI: http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

Note: Download the latest text version of this file using its http URI above. Files in

appendices are intended for browsing only; do not copy/paste for testing or processing.

This is a simple example XSLT that generates hypertext links to the mpd-catalog entries shown

in Appendix C: Sample MPD Catalog Instance based on values of the relativePathName

attribute for each artifact listed in the mpd-catalog. An MPD author may use or adapt this

XSLT, develop a more sophisticated XSLT as necessary, or not include an XSLT at all.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:ca="http://reference.niem.gov/niem/resource/mpd/catalog/1.0/">

<xsl:output method="html" indent="yes"/>

<xsl:template name="put-row">

 <xsl:param name="item"/>

 <tr>

 <td><xsl:value-of select="$item/@ca:id"/></td>

 <td>

 <a>

 <xsl:attribute name="href">

 <xsl:value-of select="$item/@ca:relativePathName"/>

 </xsl:attribute>

 <xsl:value-of select="$item/@ca:relativePathName"/>

 </td>

 <td><xsl:value-of select="$item/@ca:descriptionText"/></td>

 <td><xsl:value-of select="$item/@ca:externalURI"/></td>

 </tr>

</xsl:template>

<xsl:template name="process-ids">

 <xsl:param name="in-string"/>

 <xsl:variable name="normalized" select="normalize-space($in-string)"/>

 <xsl:variable name="head">

 <xsl:choose>

 <xsl:when test="contains($normalized, ' ')">

 <xsl:value-of select="substring-before($normalized, ' ')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$normalized"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:choose>

http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

NIEM Model Package Description (MPD) Specification

 D-8

 <xsl:when test="string-length($head) = 0"/>

 <xsl:otherwise>

 <xsl:variable name="match" select="//*[normalize-space(@ca:id) =

$head]"/>

 <xsl:call-template name="put-row">

 <xsl:with-param name="item" select="$match"/>

 </xsl:call-template>

 <xsl:variable name="tail" select="substring-after(normalize-space($in-

string), ' ')"/>

 <xsl:if test="string-length($tail) > 0">

 <xsl:call-template name="process-ids">

 <xsl:with-param name="in-string" select="$tail" />

 </xsl:call-template>

 </xsl:if>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="/">

 <html>

 <body><xsl:apply-templates/></body>

 </html>

</xsl:template>

<xsl:template match="/ca:Catalog">

 <h1>IEPD: <xsl:value-of select="@ca:mpdName" /></h1>

 <table border="3">

 <thead style="background-color:maroon; color:white; ">

 <tr>

 <th>Attribute</th>

 <th>Value</th>

 </tr>

 </thead>

 <tr>

 <td>URI</td>

 <td><xsl:value-of select="@ca:mpdURI" /></td>

 </tr>

 <tr>

 <td>Class</td>

 <td><xsl:value-of select="@ca:mpdClassCode" /></td>

 </tr>

 <tr>

 <td>Name</td>

 <td><xsl:value-of select="@ca:mpdName" /></td>

 </tr>

 <tr>

 <td>Version</td>

 <td><xsl:value-of select="@ca:mpdVersionID" /></td>

 </tr>

 <tr>

 <td>Description</td>

 <td><xsl:value-of select="@ca:descriptionText" /></td>

 </tr>

 </table>

NIEM Model Package Description (MPD) Specification

 D-9

 <h2>All File Artifacts (and Folders; organized by directory)</h2>

 <table border="3">

 <thead style="background-color:maroon; color:white; ">

 <tr>

 <th>Local ID</th>

 <th>Path and File Name</th>

 <th>Description</th>

 <th>External URI</th>

 </tr>

 </thead>

<xsl:for-each select="//ca:File | //ca:Folder">

 <xsl:sort select="@ca:relativePathName" />

 <xsl:call-template name="put-row">

 <xsl:with-param name="item" select="."/>

 </xsl:call-template>

</xsl:for-each>

</table>

 <h2>All FileSet Artifacts (organized by set)</h2>

 <table border="3">

 <thead style="background-color:maroon; color:white; ">

 <tr>

 <th>Local ID</th>

 <th>Path and File Name</th>

 <th>Description</th>

 <th>External URI</th>

 </tr>

 </thead>

<xsl:for-each select="ca:FileSet">

 <!-- process FileSet element -->

 <xsl:call-template name="put-row">

 <xsl:with-param name="item" select="."/>

 </xsl:call-template>

 <!-- process FileSet/@files list -->

 <xsl:call-template name="process-ids">

 <xsl:with-param name="in-string" select="@ca:files" />

 </xsl:call-template>

 <!-- process each FileSet/File element -->

 <xsl:for-each select="ca:File">

 <xsl:call-template name="put-row">

 <xsl:with-param name="item" select="."/>

 </xsl:call-template>

 </xsl:for-each>

</xsl:for-each>

 </table>

NIEM Model Package Description (MPD) Specification

 D-10

 <h2>Notes about artifacts:</h2>

 <p>Artifacts with External URIs are reused from another MPD.</p>

 <h2>Metadata</h2>

 <table border="3">

 <thead style="background-color:#24ffc0; ">

 <tr>

 <th>Attribute</th>

 <th>Value</th>

 </tr>

 </thead>

 <tr>

 <td>Security Marking</td>

 <td><xsl:value-of select="ca:Metadata/ca:SecurityMarkingText"/></td>

 </tr>

 <tr>

 <td>Creation Date</td>

 <td><xsl:value-of select="ca:Metadata/ca:CreationDate"/></td>

 </tr>

 <tr>

 <td>Last Revision Date</td>

 <td><xsl:value-of select="ca:Metadata/ca:LastRevisionDate"/></td>

 </tr>

 <tr>

 <td>Next Revision Date</td>

 <td><xsl:value-of select="ca:Metadata/ca:NextRevisionDate"/></td>

 </tr>

 <tr>

 <td>Status</td>

 <td><xsl:value-of select="ca:Metadata/ca:StatusText"/></td>

 </tr>

<xsl:for-each select="ca:Metadata/ca:KeywordText">

 <tr>

 <td>Keyword</td>

 <td><xsl:value-of select="."/></td>

 </tr>

</xsl:for-each>

<xsl:for-each select="ca:Metadata/ca:DomainText">

 <tr>

 <td>Domain</td>

 <td><xsl:value-of select="."/></td>

 </tr>

</xsl:for-each>

 <tr>

 <td>Purpose</td>

 <td>

 <xsl:value-of select="ca:Metadata/ca:PurposeText"/>

 </td>

 </tr>

<xsl:for-each select="ca:Metadata/ca:ExchangePatternText">

NIEM Model Package Description (MPD) Specification

 D-11

 <tr>

 <td>Exchange Pattern</td>

 <td><xsl:value-of select="."/></td>

 </tr>

</xsl:for-each>

<xsl:for-each select="ca:Metadata/ca:ExchangePartnerName">

 <tr>

 <td>Exchange Partner</td>

 <td><xsl:value-of select="."/></td>

 </tr>

</xsl:for-each>

 </table>

 <h2>Lineage</h2>

 <table border="3">

 <thead style="background-color:green; color:white; ">

 <tr>

 <th>Relationship</th>

 <th>Resource</th>

 <th>Description</th>

 </tr>

 </thead>

<xsl:for-each select="ca:Metadata/ca:Relationship">

 <tr>

 <td><xsl:value-of select="@ca:relationshipCode"/></td>

 <td><xsl:value-of select="@ca:resourceURI"/></td>

 <td><xsl:value-of select="@ca:descriptionText"/></td>

 </tr>

</xsl:for-each>

 </table>

 <h2>Authoritative Source</h2>

 <table border="3">

 <thead style="background-color:blue; color:white; ">

 <tr>

 <th>Attribute</th>

 <th>Value</th>

 </tr>

 </thead>

 <tr>

 <td>Name</td>

 <td>

 <xsl:value-of

select="ca:Metadata/ca:AuthoritativeSource/ca:ASName"/>

 </td>

 </tr>

 <tr>

 <td>Address</td>

 <td>

NIEM Model Package Description (MPD) Specification

 D-12

 <xsl:value-of

select="ca:Metadata/ca:AuthoritativeSource/ca:ASAddressText"/>

 </td>

 </tr>

 <tr>

 <td>Web Site</td>

 <td>

 <xsl:value-of

select="ca:Metadata/ca:AuthoritativeSource/ca:ASWebSiteURL"/>

 </td>

 </tr>

<xsl:for-each select="ca:Metadata/ca:AuthoritativeSource/ca:POC">

 <tr>

 <td>POC</td>

 <td>

 <xsl:value-of select="ca:POCName"/>,

 <xsl:value-of select="ca:POCEmail"/>,

 <xsl:value-of select="ca:POCTelephone"/>

 </td>

 </tr>

</xsl:for-each>

 </table>

</xsl:template>

</xsl:stylesheet>

NOTE:

The XSLT example above works with XSLT 1.0 and will execute in most browsers. It does not

recompose original URIs from their safe CURIE form. Additional XSLT 1.0 code would be

required to convert safe CURIEs to URIs. That code would likely be complex.

XSLT 2.0 makes this conversion easier through the application of customized functions such as

the one below (in curie-functions.xsl.xslext). However, browsers do not support

XSLT 2.0. To use these functions requires an XSLT 2.0 processor such as:

http://saxon.sourceforge.net/

http://www.altova.com/altovaxml.html

If you need to use a browser to see URIs (instead of safe CURIEs), then you have two options:

1. Use XSLT 2.0 to generate an XHTML index artifact and then include it with the

mpd-catalog.xml artifact within the MPD.

2. Do not use safe CURIEs at all. Instead, use only URIs in the mpd-catalog.xml

artifact.

http://saxon.sourceforge.net/
http://www.altova.com/altovaxml.html

NIEM Model Package Description (MPD) Specification

 D-13

curie-functions.xsl (part of the example that corresponds to version 1.1)

URI: http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

Note: Download the latest text version of this file using http URI above. Files in appendices

are intended for browsing only; do not copy/paste for testing or processing.

<?xml version="1.0" encoding="UTF-8"?>

<stylesheet xmlns:cf="http://ittl.gtri.org/wr24/2010-03-03-1533/curie-

functions/1"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.w3.org/1999/XSL/Transform"

 version="2.0">

 <function name="cf:resolve-curie" as="xs:anyURI?">

 <param name="curie" as="xs:string"/>

 <param name="element" as="element()"/>

 <choose>

 <when test="not(matches($curie, '[^:]*:[^:]*'))">

 <message>Curie has bad format. Value was "<value-of

select="$curie"/>".</message>

 </when>

 <otherwise>

 <variable name="prefix" select="substring-before($curie, ':')"/>

 <variable name="rest" select="substring-after($curie, ':')"/>

 <variable name="base-URI" select="namespace-uri-for-prefix($prefix,

$element)"/>

 <choose>

 <when test="empty($base-URI)">

 <message>Curie has bad prefix. Can't resolve prefix "<value-

of select="$prefix"/>".</message>

 </when>

 <otherwise>

 <sequence select="xs:anyURI(concat($base-URI, $rest))"/>

 </otherwise>

 </choose>

 </otherwise>

 </choose>

 </function>

 <function name="cf:resolve-safe-curie" as="xs:anyURI?">

 <param name="safe-curie" as="xs:string"/>

 <param name="element" as="element()"/>

 <choose>

 <when test="matches($safe-curie, '^\[[^\[\]]+\]$')">

 <!-- it's a [curie] -->

 <sequence select="cf:resolve-curie(

 substring($safe-curie, 2, string-length($safe-curie) - 2), $element)"/>

 </when>

<!-- better to put improved URI tests here. xs:anyURI will take anything. -->

 <when test="string-length(normalize-space($safe-curie)) > 0

 and matches($safe-curie, '^[^\[\]]+$')">

 <sequence select="xs:anyURI($safe-curie)"/>

 </when>

 <otherwise>

http://reference.niem.gov/niem/resource/mpd/catalog/1.0/example/

NIEM Model Package Description (MPD) Specification

 D-14

 <message>Safe CURIE probably is not a URI. Value was "<value-of

select="$safe-curie"/>"</message>

 </otherwise>

 </choose>

 </function>

</stylesheet>

<!--

 Local Variables:

 mode: sgml

 indent-tabs-mode: nil

 fill-column: 9999

 End:

-->

NIEM Model Package Description (MPD) Specification

 E-1

Appendix E: Browser Display of MPD Catalog

This display was generated with Appendix C example mpd-catalog.xml, Appendix D mpd-

catalog.xsl, and Firefox (v11.0) browser (that executes XSLT v1.0).

NIEM Model Package Description (MPD) Specification

 E-2

NIEM Model Package Description (MPD) Specification

 E-3

NIEM Model Package Description (MPD) Specification

 F-1

Appendix F: MPD Artifacts
This appendix (the table for which begins on the next page) identifies mandatory and optional

artifacts for various types of MPDs. The Cardinality columns list the minimum and maximum

cardinality for each artifact in an MPD. Typical cardinalities are interpreted as follows:

 Min, Max The associated artifact is …

 1, 1 required; not optional; one and only one is allowed

 1, U required; not optional; one or any number (unbounded) is allowed;

 repeatable

 0, 1 optional; zero or exactly one is allowed (0 or 1)

 0, U optional; zero or any number (unbounded) is allowed; repeatable

 NA not applicable to this MPD (effectively 0, 0)

Key to File Extensions (types)

csv Comma Separated Values

doc Microsoft Word (text document); includes docx

gif Graphic Interchange Format

htm HyperText Markup Language; includes html

jpg Joint Photographic Experts Group; includes jpeg

mdb Microsoft Access (database); includes mdbx

owl Web Ontology Language

pdf Portable Document Format

png Portable Network Graphics

ppt Microsoft PowerPoint (graphic, presentation); includes pptx

sch Schematron

svg Scalable Vector Graphics

txt ASCII text

vsd Microsoft Visio (graphic); includes vdx and other derivatives

wsdl Web Services Description Language

xmi XML Metadata Interchange

xml Extensible Markup Language

xsd XML Schema Definition

xls Microsoft Excel (spreadsheet); includes xlsx

xsl XML Stylesheet Language, includes xslt transformation

Sets of File Types

TEXT {txt, htm, pdf, doc}

GRAPH {jpg, gif, png, pdf, svg, ppt, vsd}

SPREAD {csv, xsl}

NIEM Model Package Description (MPD) Specification

 F-2

Cardinality (Min, Max)

Artifact Definition / Description

Typical

 File

Extensions

Recommended

Purpose
IEPD EIEM

NIEM

Release

Core

Update

Domain

Update

The following MPD artifacts are either mandatory, not applicable,

or if optional, they are common in some MPDs.

Subset Schema A NIEM schema (or set)

derived from a NIEM reference

schema (or set) that is a subset

of the reference schema in terms

of its data components and

cardinality of those

components.

xsd set-member

(member of a

base schema

set or

constraint

schema set)

0,U 0,U NA NA NA

Reference

Schema

A schema (or set) that is the

authoritative definition of

business semantics for

components in its namespace;

intended to serve as basis for

components in IEPD schemas;

constitute NIEM releases and

domain updates

xsd set-member

(member of a

base schema

set or

constraint

schema set)

0,U 0,U 1,U 1,U 1,U

Constraint

Schema

A schema (or set) used to

represent and validate (using

XML Schema) tighter

constraints than are possible

with NIEM alone.

xsd set-member

(member of a

constraint

schema set)

0,U 0,U NA NA NA

 A NIEM-conformant IEPD or EIEM is required to have at least one schema that is either a NIEM reference

schema or a subset derived from a NIEM reference schema.

NIEM Model Package Description (MPD) Specification

 F-3

Cardinality (Min, Max)

Artifact Definition / Description

Typical

 File

Extensions

Recommended

Purpose
IEPD EIEM

NIEM

Release

Core

Update

Domain

Update

Extension

Schema

A schema (or set) that contain

new data components or that

extend existing NIEM

components per NIEM NDR.

xsd set-member

(member of a

base schema

set or

constraint

schema set)

0,U 0,U NA NA NA

Exchange

Schema

A schema declaring one or more

root elements for use in IEPs

(instances of an IEPD).

xsd set-member

(member of a

base schema

set or

constraint

schema set)

1,U NA NA NA NA

Wantlist An XML artifact that is an

abbreviated representation of a

subset; used as input/output to

the NIEM Schema Subset

Generation Tool (SSGT); used

to build, save, reload, or

generate a NIEM schema

subset.

xml set-member

(member of a

base schema

set or

constraint

schema set)

0,U 0,U NA NA NA

Sample XML

instance

An XML instance document

that validates with

corresponding defining

schemas; a sample IEP.

xml sample-

instance

1,U 0,U NA NA 0,U

mpd-catalog A manifest that contains

identifiers, directory structure,

characteristic properties, and

other metadata for the MPD and

its artifacts.

xml catalog 1,1 1,1 1,1 1,1 1,1

Change log A history of modifications

(initial change log identifies

creation date only).

xml,

SPREAD,

TEXT

changelog 1,1 1,1 1,1 1,1 1,1

 An IEPD or EIEM change log may be informal in nature and is not required to conform to the strict XML schema

definition that is mandatory for releases, core updates, and domain updates. Therefore, csv or TEXT formats are

also authorized.

 Each NIEM release, core update, and domain update is required to conform to the change log XML schema in

http://reference.niem.gov/niem/resource/mpd/changelog/.

http://reference.niem.gov/niem/resource/mpd/changelog/

NIEM Model Package Description (MPD) Specification

 F-4

Cardinality (Min, Max)

Artifact Definition / Description

Typical

 File

Extensions

Recommended

Purpose
IEPD EIEM

NIEM

Release

Core

Update

Domain

Update

Master

document

An artifact containing

explanatory prose text; primary

and initial source of human

readable information (similar to

a readme file); references

other key documents

Various master-

document

1,1 1,1 NA NA NA

Conformance

verification

An artifact output from a

conformance tool or other

competent authority validating

conformance to NIEM.

Various conformance-

report

0,U 0,U 0,U 0,U 0,U

The following MPD artifacts are either optional or not applicable

Stylesheet or

transformation

An XSLT or XSL file that

converts an XML file to another

form. Often used

to convert an XML file to

HTML for display in a browser.

xsl transformation

OR

display

0,U 0,U 0,U 0,U 0,U

Ontology A conceptual model that

represents facts, relationships,

and rules among entities.

owl ontology 0,U 0,U 0,U 0,U 0,U

Mapping

(to NIEM)

An artifact that represents how a

data content model relates to

equivalent NIEM data

components.

xmi,

SPREAD

mapping 0,U 0,U NA NA NA

Data content

model (UML)

A representation of a business

data requirements, semantics,

structure, and relationships.

xmi data-model 0,U 0,U NA NA NA

Web Service A definition for network

services as a set of endpoints

operating on messages

containing either document-

oriented or procedure-oriented

information.

wsdl web-service 0,U 0,U NA NA NA

General

documentation

An explanatory artifact. TEXT documentation 0,U 0,U 0,U 0,U 0,U

NIEM Model Package Description (MPD) Specification

 F-5

Cardinality (Min, Max)

Artifact Definition / Description

Typical

 File

Extensions

Recommended

Purpose
IEPD EIEM

NIEM

Release

Core

Update

Domain

Update

Graphic A visual artifact such as a

diagram, chart, picture, etc.

GRAPH documentation 0,U 0,U NA NA NA

Data dictionary A lexicon that provides

metadata names and associated

semantics.

TEXT data-dictionary 0,U 0,U NA NA NA

Business Rules An artifact used to document

constraints beyond the

capability of NIEM and XML

Schema; may be used to

validate or verify that such

constraints are satisfied.

sch, TEXT business-rules 0,U 0,U NA NA NA

MOA/MOU A Memorandum of Agreement

or Understanding among

exchange partners or

enterprises.

TEXT memorandum 0,U 0,U NA NA NA

Endorsement An acknowledgement from a

competent authority (Federal,

State, tribal, local government,

or commercial) that an MPD

has been adopted to use for a

given purpose, locale, domain,

or environment.

TEXT endorsement 0,U 0,U NA NA NA

Test data;

quality

assurance

report

Testing results, data, or reports

that indicate product quality or

extent of testing performed.

Various test-report 0,U 0,U 0,U 0,U 0,U

Tool-specific

artifact

An artifact in a non-standard

format (not listed in this

Appendix) that is processed as

input or generated as output

to/from a software tool.

Various tool-specific-

file

0,U 0,U NA NA NA

NIEM Model Package Description (MPD) Specification

 G-1

Appendix G: MPD Lexicon (Nature and Purpose)

mpd-lexicon-1.1.owl (version 1.1)

URI: http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/

Note: Download the latest text version of this file using its http URI above. Files in

appendices are intended for browsing only; do not copy/paste for testing or processing.

<?xml version="1.0"?>

<!DOCTYPE Ontology [

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

 xml:base="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 ontologyIRI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/">

 <Prefix name=""

IRI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/"/>

 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

 <Prefix name="xml" IRI="http://www.w3.org/XML/1998/namespace"/>

 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>

 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>

 <Prefix name="nature"

IRI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/nature#"/>

 <Prefix name="owl2xml" IRI="http://www.w3.org/2006/12/owl2-xml#"/>

 <Prefix name="purpose"

IRI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/purpose#"/>

 <Annotation>

 <AnnotationProperty abbreviatedIRI="owl:versionInfo"/>

 <Literal datatypeIRI="&xsd;string">1.1</Literal>

 </Annotation>

 <Declaration>

 <Class IRI="nature#binary"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#character"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#csv"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#doc"/>

 </Declaration>

http://reference.niem.gov/niem/resource/mpd/lexicon/1.1/

NIEM Model Package Description (MPD) Specification

 G-2

 <Declaration>

 <Class IRI="nature#file"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#file-set"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#gif"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#html"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#image"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#jpg"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#mdb"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-artifact"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-constraint-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-core-update"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-domain-update"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-eiem"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-exchange-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-extension-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-iepd"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-incremental-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-mpd"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-mpd-catalog"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-mpd-changelog"/>

NIEM Model Package Description (MPD) Specification

 G-3

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-reference-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-release"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-replacement-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-subset-schema"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#niem-wantlist"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#owl"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#pdf"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#png"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#ppt"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#rdf"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#schema-set"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#schematron"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#svg"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#text"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#vsd"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#wsdl"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xhtml"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xls"/>

 </Declaration>

 <Declaration>

NIEM Model Package Description (MPD) Specification

 G-4

 <Class IRI="nature#xmi"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xml"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xml-catalog"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xsd"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#xslt"/>

 </Declaration>

 <Declaration>

 <Class IRI="nature#zip"/>

 </Declaration>

 <Declaration>

 <Class abbreviatedIRI="owl:Thing"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#administrative"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#base-schema-set"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#business-rules"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#catalog"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#changelog"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#conformance-report"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#constraint-schema-set"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#data-dictionary"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#data-model"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#display"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#documentation"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#endorsement"/>

NIEM Model Package Description (MPD) Specification

 G-5

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#mapping"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#master-document"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#memorandum"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#metadata-extended"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#non-normative-reference"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#normative-reference"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#ontology"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#quality-assurance-report"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#report"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#sample-instance"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#set-member"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#subordinate-set-member"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#technical-reference"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#test-report"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#tool-specific-file"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#transformation"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="purpose#web-service"/>

 </Declaration>

NIEM Model Package Description (MPD) Specification

 G-6

 <SubClassOf>

 <Class IRI="nature#binary"/>

 <Class IRI="nature#file"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#character"/>

 <Class IRI="nature#file"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#csv"/>

 <Class IRI="nature#character"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#doc"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#gif"/>

 <Class IRI="nature#image"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#html"/>

 <Class IRI="nature#character"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#image"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#jpg"/>

 <Class IRI="nature#image"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#mdb"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-conformant-schema-document"/>

 <Class IRI="nature#xsd"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-constraint-schema"/>

 <Class IRI="nature#niem-conformant-schema-document"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-core-update"/>

 <Class IRI="nature#niem-mpd"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-domain-update"/>

 <Class IRI="nature#niem-mpd"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-eiem"/>

 <Class IRI="nature#niem-mpd"/>

 </SubClassOf>

NIEM Model Package Description (MPD) Specification

 G-7

 <SubClassOf>

 <Class IRI="nature#niem-exchange-schema"/>

 <Class IRI="nature#niem-conformant-schema-document"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-extension-schema"/>

 <Class IRI="nature#niem-conformant-schema-document"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-iepd"/>

 <Class IRI="nature#niem-mpd"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-incremental-schema"/>

 <Class IRI="nature#niem-reference-schema"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-mpd-catalog"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-mpd-changelog"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-reference-schema"/>

 <Class IRI="nature#niem-conformant-schema-document"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-release"/>

 <Class IRI="nature#niem-mpd"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-replacement-schema"/>

 <Class IRI="nature#niem-reference-schema"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-subset-schema"/>

 <Class IRI="nature#niem-conformant-schema-document"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#niem-wantlist"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#owl"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#pdf"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#png"/>

 <Class IRI="nature#image"/>

 </SubClassOf>

NIEM Model Package Description (MPD) Specification

 G-8

 <SubClassOf>

 <Class IRI="nature#ppt"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#rdf"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#schema-set"/>

 <Class IRI="nature#file-set"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#schematron"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#svg"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#text"/>

 <Class IRI="nature#character"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#vsd"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#wsdl"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xhtml"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xls"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xmi"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xml"/>

 <Class IRI="nature#character"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xml-catalog"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#xsd"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

NIEM Model Package Description (MPD) Specification

 G-9

 <SubClassOf>

 <Class IRI="nature#xslt"/>

 <Class IRI="nature#xml"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="nature#zip"/>

 <Class IRI="nature#binary"/>

 </SubClassOf>

 <DisjointUnion>

 <Class IRI="nature#niem-artifact"/>

 <Class IRI="nature#file"/>

 <Class IRI="nature#file-set"/>

 </DisjointUnion>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#administrative"/>

 <ObjectProperty IRI="purpose#documentation"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#base-schema-set"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#business-rules"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#catalog"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#changelog"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#conformance-report"/>

 <ObjectProperty IRI="purpose#report"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#constraint-schema-set"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#data-dictionary"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#data-model"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#display"/>

 <ObjectProperty IRI="purpose#transformation"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

NIEM Model Package Description (MPD) Specification

 G-10

 <ObjectProperty IRI="purpose#documentation"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#endorsement"/>

 <ObjectProperty IRI="purpose#administrative"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#mapping"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#master-document"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#memorandum"/>

 <ObjectProperty IRI="purpose#administrative"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#metadata-extended"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#non-normative-reference"/>

 <ObjectProperty IRI="purpose#technical-reference"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#normative-reference"/>

 <ObjectProperty IRI="purpose#technical-reference"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#ontology"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#quality-assurance-report"/>

 <ObjectProperty IRI="purpose#report"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#report"/>

 <ObjectProperty IRI="purpose#documentation"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#sample-instance"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#subordinate-set-member"/>

 <ObjectProperty IRI="purpose#set-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#technical-reference"/>

 <ObjectProperty IRI="purpose#documentation"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

NIEM Model Package Description (MPD) Specification

 G-11

 <ObjectProperty IRI="purpose#test-report"/>

 <ObjectProperty IRI="purpose#report"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#tool-specific-file"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#transformation"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="purpose#web-service"/>

 <ObjectProperty IRI="purpose#mpd-member"/>

 </SubObjectPropertyOf>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#base-schema-set"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#business-rules"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#catalog"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#changelog"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#constraint-schema-set"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#data-dictionary"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#mpd-member"/>

 <Class IRI="nature#niem-mpd"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#set-member"/>

 <Class IRI="nature#file-set"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="purpose#subordinate-set-member"/>

 <Class IRI="nature#file-set"/>

 </ObjectPropertyDomain>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#base-schema-set"/>

 <Class IRI="nature#schema-set"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

NIEM Model Package Description (MPD) Specification

 G-12

 <ObjectProperty IRI="purpose#business-rules"/>

 <Class IRI="nature#file-set"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#catalog"/>

 <Class IRI="nature#niem-mpd-catalog"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#changelog"/>

 <Class IRI="nature#file"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#constraint-schema-set"/>

 <Class IRI="nature#schema-set"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#data-dictionary"/>

 <Class IRI="nature#file-set"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#master-document"/>

 <Class IRI="nature#file"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#mpd-member"/>

 <Class IRI="nature#file-set"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#set-member"/>

 <Class IRI="nature#file"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="purpose#subordinate-set-member"/>

 <Class IRI="nature#file"/>

 </ObjectPropertyRange>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#binary</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a binary file with

unknown or unspecified encoding or format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#binary</IRI>

 <Literal datatypeIRI="&xsd;string">binary file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#character</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a character encoded

file.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#character</IRI>

NIEM Model Package Description (MPD) Specification

 G-13

 <Literal datatypeIRI="&xsd;string">character file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#csv</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a Comma Separated

Value (CSV) file.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#doc</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a Microsoft Office

Word file (includes doc and docx).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#file</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a set of files with

only a single member.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#file</IRI>

 <Literal datatypeIRI="&xsd;string">single file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#file-set</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a set of files that

are grouped for a specified purpose.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#file-set</IRI>

 <Literal datatypeIRI="&xsd;string">set of files</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#gif</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an image file in

Graphic Interchange Format (GIF).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#html</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C

HyperText Markup Language (HTML) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#image</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an image file with

unknown or unspecified format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

NIEM Model Package Description (MPD) Specification

 G-14

 <IRI>nature#image</IRI>

 <Literal datatypeIRI="&xsd;string">binary image file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#jpg</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an image file in Joint

Photographic Experts Group (JPEG or JPG) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#mdb</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in Microsoft

Office Access database format (includes mdb and mdbx).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-artifact</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file or file set

(i.e., an artifact) in a NIEM MPD. </Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-artifact</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM artifact</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-conformant-schema-document</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM schema document

that is described by and conforms to the NIEM NDR. </Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-conformant-schema-document</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM-conformant XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-constraint-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema that

defines additional constraints on XML instances beyond those that can be

enforced by the corresponding exchange, extension or subset schemas, or by

the NIEM Naming and Design Rules for XML instances.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-constraint-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM constraint XML schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-core-update</IRI>

NIEM Model Package Description (MPD) Specification

 G-15

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM core update

model package description (MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-core-update</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM core update</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-domain-update</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM domain update

model package description (MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-domain-update</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM domain update</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-eiem</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM Enterprise

Information Exchange Model (EIEM) model package description (MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-eiem</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM EIEM</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-exchange-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema that is

a root schema (and declares a root element) for an IEPD.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-exchange-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM exchange XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-extension-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema that

extends a NIEM release in accordance with the NIEM Naming and Design

Rules.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-extension-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM extension XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

NIEM Model Package Description (MPD) Specification

 G-16

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-iepd</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM Information

Exchange Package Documentation (IEPD) model package description

(MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-iepd</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM IEPD</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-incremental-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema within a

NIEM domain update that represents incremental changes to an existing NIEM

domain.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-incremental-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM incremental XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-mpd</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM model package

description (MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-mpd</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM MPD</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-mpd-catalog</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM model package

description (MPD) catalog file format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-mpd-catalog</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM MPD catalog file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-mpd-changelog</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM model package

description (MPD) change log (formal or informal)..</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-mpd-changelog</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM MPD change log file</Literal>

NIEM Model Package Description (MPD) Specification

 G-17

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-reference-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema that

defines and declares NIEM data components that are authoritative.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-reference-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM reference XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-release</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM release model

package description (MPD).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-release</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM release</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-replacement-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema within a

NIEM domain update that represents a complete replacement of an existing NIEM

domain schema.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-replacement-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM replacement XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-subset-schema</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an XML schema that has

been derived from a NIEM reference schema and represents a subset of the

reference schema.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-subset-schema</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM subset XML Schema

document</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#niem-wantlist</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a NIEM wantlist

file.</Literal>

 </AnnotationAssertion>

NIEM Model Package Description (MPD) Specification

 G-18

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#niem-wantlist</IRI>

 <Literal datatypeIRI="&xsd;string">NIEM schema subset wantlist

file</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#owl</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C Web

Ontology Language (OWL) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#pdf</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in Adobe

Portable Document Format (PDF).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#png</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an image file in

Portable Network Graphics (PNG) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#ppt</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a Microsoft PowerPoint

presentation file (includes ppt and pptx).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#rdf</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C

Resource Description Framework (RDF) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#schema-set</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a set of XML schema

grouped for a particular purpose. If a schema set contains a wantlist, then

that wantlist defines some parts of that schema set.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#schematron</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in Schematron

format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#svg</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in Scalable

Vector Graphic (SVG) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

NIEM Model Package Description (MPD) Specification

 G-19

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#text</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a plain text

file.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#vsd</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in Microsoft

Visio diagram format (includes vsd and vdx).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#wsdl</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C Web

Services Description Language (WSDL) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xhtml</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C XML

HyperText Markup Language format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xls</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a Microsoft Excel

spreadsheet file (includes xls and xlsx).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xmi</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the Object

Management Group (OMG) XML Metadata Interchange (XMI) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xml</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C

eXtensible Markup Language (XML) format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xml-catalog</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of an OASIS XML Catalog

(https://www.oasis-open.org/committees/download.php/14809/xml-

catalogs.html)</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>nature#xml-catalog</IRI>

 <Literal datatypeIRI="&xsd;string">OASIS XML catalog</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xsd</IRI>

NIEM Model Package Description (MPD) Specification

 G-20

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C XML

Schema format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#xslt</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a file in the W3C XML

Stylesheet Language (XSL) Tranformations (XSLT) format (includes both xsl and

xslt).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>nature#zip</IRI>

 <Literal datatypeIRI="&xsd;string">A nature of a compressed archive

in PKZIP format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#administrative</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of

documentation that relates to business operations, decisions, organizing

people and resources, agreements, testimonials, etc. about a model package

description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#base-schema-set</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a collection

of XML schemas that are maintained together for a logical reason or purpose

(usually because of inter dependencies).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#business-rules</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a statement

or set of statements (formal or informal) that define and/or constrain some

aspect of business data or information.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#catalog</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of identifying,

locating, and describing all artifacts in a model package

description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#changelog</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of recording

all changes (additions, deletions, modifications) to a model package

description relative to a previous version.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#conformance-report</IRI>

NIEM Model Package Description (MPD) Specification

 G-21

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a report

that evaluates NIEM conformance.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#constraint-schema-set</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a collection

of XML schemas that together define additional constraints on XML instances

(beyond those defined by a NIEM Base Schema Set).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#data-dictionary</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a record of

information about data (i.e. metadata) such as names, meaning, relationships

to other data, origin, usage, and format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#data-model</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a formal

representation (e.g., UML) of business data requirements that indicates data

semantics, structure, and relationships.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#display</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of formatting

information for viewing on a computer monitor.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#documentation</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of describing

or explaining any aspect of design, usage, testing, processing, etc. of a

model package description and/or its contents.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#endorsement</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of

documentation that supports, approves, sanctions, or recommends a model

package description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#mapping</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of describing

how one data model or set of data components corresponds to another by

identifying semantic equivalence or similarity.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#master-document</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a primary

source of documentation; a readme file; a first documentation source to

NIEM Model Package Description (MPD) Specification

 G-22

consult and one that may reference other supplemental

documentation.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#memorandum</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of

documentation that records events, observations, agreements, or other

business related aspects pertaining to a model package description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#metadata-extended</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of an XML

artifact that provides additional metadata beyond that contained in a model

package description catalog.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#mpd-member</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of an artifact

(file or file set) member of a NIEM MPD. </Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>purpose#mpd-member</IRI>

 <Literal datatypeIRI="&xsd;string">member of an MPD</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#non-normative-reference</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of technical

documentation that provides informal guidance or recommends methods that

relate to technical aspects of a model package description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#normative-reference</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of technical

documentation that provides formal specifications, instructions, or rules for

techniques and methods that relate to a model package description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#ontology</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a

standardized representation of knowledge as a set of concepts within a

domain, and the relationships between those concepts. It can be used to

reason about the entities within that domain, and may be used to describe the

domain.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#quality-assurance-report</IRI>

NIEM Model Package Description (MPD) Specification

 G-23

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a report

that evaluates or measures degree of excellence against some prescribed

criteria.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#report</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a document

that records evaluation results produced through review, testing, or analysis

that was executed by automatic processing, manual (human) means, or a

combination of both.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#sample-instance</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of an XML

instance document that exemplifies a typical instance that validates against

an XML schema or schema set.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#set-member</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a member of

a file set artifact.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:label"/>

 <IRI>purpose#set-member</IRI>

 <Literal datatypeIRI="&xsd;string">member of a set of files</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#subordinate-set-member</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a file set

member that is dependent upon, supplements, or is in some way subordinate to

one or more sibling members; for example, gif or html files that are

dependent upon (i.e., hyperlined from) an index html file. </Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#technical-reference</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of technical

documentation that defines, describes, or explains technical aspects of a

model package description.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#test-report</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of a document

that records the results of testing.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#tool-specific-file</IRI>

NIEM Model Package Description (MPD) Specification

 G-24

 <Literal datatypeIRI="&xsd;string">Serves the purpose of an artifact

that is an input to or output from some software tool used to develop

contents of or implement a model package description. Such artifacts may be

in either a standard open format or proprietary format.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#transformation</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of translating

an artifact into another format or representation.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>purpose#web-service</IRI>

 <Literal datatypeIRI="&xsd;string">Serves the purpose of establishing

a method for communication between two electronic devices over a

network.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <AbbreviatedIRI>owl:Thing</AbbreviatedIRI>

 <Literal datatypeIRI="&xsd;string">The most general OWL class of all

individuals; a superclass of all OWL classes.</Literal>

 </AnnotationAssertion>

</Ontology>

<!-- Generated by the OWL API (version 3.2.5.1928)

http://owlapi.sourceforge.net -->

NIEM Model Package Description (MPD) Specification

 G-25

NIEM Nature Definitions

NIEM Model Package Description (MPD) Specification

 G-26

NIEM Model Package Description (MPD) Specification

 G-27

NIEM Purpose Definitions

NIEM Model Package Description (MPD) Specification

 G-28

NIEM Model Package Description (MPD) Specification

 G-29

Nature and Purpose Hierarchies

Nature Purpose

subordinate-set-member

NIEM Model Package Description (MPD) Specification

 H-1

Appendix H: Rule Summary

[Rule 3-1] Any XML instance that validates against a correct NIEM schema subset will always

validate against the entire NIEM reference schema set from which that subset was created.

[Rule 3-2] NIEM subsets may omit elements with zero cardinality and adjust the cardinality of

elements in reference schemas from which they are derived, as long as the subset property is

maintained.

[Rule 3-3] NIEM subset schemas may omit all xsd:annotation elements that are in the

NIEM reference schema from which it is derived.

[Rule 3-4] Each schema in a schema subset derived from a schema reference set bears the same

(target) namespace as the schema in the reference set on which it is based.

[Rule 3-5.1] A schema contained in a reference schema set may be omitted from a derived

subset, if and only if ALL of the following conditions are true within that schema:

• No elements/attributes declared or types defined in the schema are required for business

exchange purposes. AND

• No elements/attributes declared or types defined in the schema are required to support other

elements or types within the subset for exchange purposes; in other words, no references to

elements or types in the schema exist in any other schema of the subset.

[Rule 3-5.2] If a schema in a reference schema set has been omitted from a derived subset, then

every xsd:import occurrence of that schema MUST be removed from all schemas within the

subset.

[Rule 3-6] An IEPD MUST contain at least one exchange schema artifact that declares at least

one top-level root element for IEP instances specified by the IEPD.

[Rule 3-7] An IEPD exchange schema MUST NOT declare any XML element that is not

intended for use as an IEP root element.

[Rule 3-8] An MPD MUST contain one and only one base schema set.

[Rule 3-9] A constraint schema bears a target namespace that has been previously assigned by a

reference schema, extension schema, or exchange schema, or is a schema that is intended to

support a constraint schema that has such a target namespace.

[Rule 3-10] A NIEM-conformant IEPD or EIEM MUST contain at least one schema that is

either a NIEM reference schema or a subset derived from a NIEM reference schema.

[Rule 3-11] A NIEM IEPD MUST contain at least one valid sample XML instance (i.e., IEP)

artifact for each exchange schema element that can be the root of a corresponding IEP.

[Rule 4-1] An MPD MUST contain an XML mpd-catalog artifact that validates with the NIEM

MPD catalog schema (XSD) and that resides in the root directory of the MPD and bears the file

name "mpd-catalog.xml".

[Rule 4-2] Every MPD MUST be assigned a version number.

NIEM Model Package Description (MPD) Specification

 H-2

[Rule 4-3] All NIEM version numbers adhere to the regular expression:

 version ::= digit+ ('.' digit+)* (status digit+)?

 Where:

 digit ::= [0-9]

 status ::= 'alpha' | 'beta' | 'rc' | 'rev'

 'alpha' indicates early development

 'beta' indicates late development; but changing or incomplete

 'rc' indicates release candidate; complete but not approved as operational

 'rev' indicates very minor revision that does not impact schema validation

(The regular expression notation used above is from XML 1.0 (Fifth Edition):

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation)

[Rule 4-4] A higher MPD version number within a version series does NOT imply compatibility

between versions. Compatibility between or among MPD versions MUST be explicitly stated in

documentation.

[Rule 4-5.1] Every MPD MUST be assigned a valid http URI.

[Rule 4-5.2] The URI for an MPD MUST end in its version number.

[Rule 4-6] Each file artifact in an MPD MUST have a corresponding File element in its mpd-

catalog.

[Rule 4-7] Each file set artifact in an MPD MUST have a corresponding FileSet element in

its mpd-catalog. This FileSet element must identify each file artifact that is a member of that

file set artifact.

[Rule 4-8] Each artifact identified in the mpd-catalog MUST be assigned an id in the format of

an NCName (Non-Colonized Name) as defined by [W3-XML-Namespaces]. This is required

for both File and FileSet artifacts.

[Rule 4-9] A URI reference to an individual MPD artifact from another resource is the

concatenation of

• The URI of the MPD that contains the artifact.

• The crosshatch or pound character ("#").

• A fragment identifier that is the locally unique id of the artifact within the mpd-catalog of the

MPD itself.

[Rule 4-10] NIEM namespaces MUST NOT be used as URIs for MPD artifacts.

[Rule 4-11] A wantlist in an mpd-catalog.xml MUST be a member of the base or

constraint schema set it is associated with.

[Rule 4-12] Every MPD that is a reference schema set (i.e., NIEM releases, core updates, and

domain updates) MUST contain an XML change log artifact that:

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

NIEM Model Package Description (MPD) Specification

 H-3

• Validates with the NIEM change log schemas (mpd-changelog.xsd and niem-

model.xsd).

Note: These are the base filenames; the actual filenames also contain a version number. For

example: mpd-changelog-1.0.xsd is the current version.

• Records changes to previous reference schemas that this MPD represents.

• Bears the file name "changelog.xml".

• Resides in the root directory of the MPD.

[Rule 4-13] Every MPD that is an IEPD or EIEM MUST contain a change log artifact that:

• Records changes to previous IEPD or EIEM schemas that this MPD represents.

• Begins with the substring "changelog".

• Resides in the root directory of the MPD.

[Rule 4-14] The initial version of an IEPD or EIEM MUST contain a change log artifact with at

least one entry for its creation date.

[Rule 4-15] If an IEPD or EIEM contains more than one change log artifact, then each change

log artifact MUST:

• Have a file name that begins with the substring "changelog".

• Reside in the MPD root directory.

[Rule 4-16] An IEPD or an EIEM MUST contain a master document located in the MPD root

directory whose filename begins with the substring "master-document".

[Rule 4-17] A NIEM IEPD or EIEM master document SHOULD (at a minimum) describe the

MPD purpose, scope, business value, exchange information, senders/receivers, interactions, and

references to other documentation.

[Rule 6-1] An MPD is packaged as a single compressed archive of files that represents a sub-

tree of a file system in standard [PK-ZIP] format. This archive MUST preserve and store the

logical directory structure intended by its author.

[Rule 6-2] Within an MPD archive, all XSD and XML artifacts MUST be valid against and

follow all rules for their respective [NIEM-NDR] conformance targets (i.e., subset, constraint,

extension, exchange, reference schemas, and XML instances); this includes being well-formed

and valid XML Schema documents.

[Rule 6-3] An MPD archive MUST uncompress (unzip) to a one and only one MPD root

directory.

[Rule 6-4] An MPD archive file MUST use file name syntax defined by the regular expression:

 mpd-filename ::= name '-' version '.' class '.zip'

 Where:

 name ::= alphanum ((alphanum | special)* alphanum)?

 alphanum ::= [a-zA-Z0-9]

NIEM Model Package Description (MPD) Specification

 H-4

 special ::= '.' | '-' | '_'

 version ::= digit+ ('.' digit+)* (status digit+)?

 digit ::= [0-9]

 status ::= 'alpha' | 'beta' | 'rc' | 'rev'

 class ::= 'rel' | 'cu' | 'du' | 'iepd' | 'eiem'

All alpha characters SHOULD be lower case to reduce the risk of complications across various

file systems. See [Rule 4-3] for an explanation of the status options.

(The regular expression notation used above is from XML 1.0 (Fifth Edition):

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation)

[Rule 6-5] Within an MPD, the <name> and <version> substrings in the file name MUST

match exactly the values for attributes mpdName and mpdVersionID within its mpd-

catalog.xml artifact.

[Rule 6-6] Within an MPD, the <class> substring in the file name MUST correctly

correspond to the value for the attribute mpdClassCode within mpd-catalog.xml. Correct

correspondence is:

IF file name <class> = THEN mpd-catalog.xml mpdClassCode =

rel release

cu core-update

du domain-update

iepd iepd

eiem eiem

[Rule 6-7] When represented on the Internet, an MPD archive SHOULD use the following

MIME Type:

 application/zip+<class> where

 <class> is one member from the set {rel, cu, du, iepd, eiem}

Use of the generic zip MIME type application/zip is allowed, but discouraged. No other

MIME types are allowed when representing MPD archives.

[Rule 6-8] Within an MPD archive, the value of each xsd:import schemaLocation

attribute MUST be a relative path reference that resolves to the correct schema within the sub-

tree.

[Rule 6-9] Absolute references to Internet resources MUST use a well-known transfer protocol

(http, https, ftp, ftps) and MUST resolve (If applicable, documentation that describes

how to resolve with security, account, and/or password issues MUST be included).

[Rule 6-10] A published IEPD MUST contain all documents necessary to understand it and

allow it to be implemented correctly.

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

NIEM Model Package Description (MPD) Specification

 H-5

[Rule 6-11] A published IEPD MUST link (through its mpd-catalog) to any EIEM it is based

on.

[Rule 6-12] Within an MPD archive, if non-NIEM-conformant schemas from other standards

are used and referenced within an MPD, then all xsd:import, xsd:include, and

xsd:redefine constructs used within those schemas MUST be modified as needed to have a

value for the schemaLocation attribute that is a relative path reference that resolves to the

correct schema within the sub-tree.

[Rule 6-13] Within any artifact of an MPD archive, any direct reference to another resource

(i.e., another artifact such as an image, schema, stylesheet, etc.) that is required to process or

display an artifact SHOULD exist within the archive at the location specified by that reference.

NIEM Model Package Description (MPD) Specification

 I-1

Appendix I: Acronyms and Abbreviations
API – Application Programming Interface

BIEC – Business Information Exchange Component

CSV – Comma Separated Value (file format)

CURIE – Compact Uniform Resource Identifier

EIEM – Enterprise Information Exchange Model

GIF – Graphic Interchange Format

HLTA – High-Level Tool Architecture

HLVA – High-Level Version Architecture

HTML – Hyper Text Markup Language

IEP – Information Exchange Package

IEPD – Information Exchange Package Documentation

JPG or JPEG – Joint Photographic (Experts) Group

MPD – Model Package Description

NA – Not Applicable

NDR – Naming and Design Rules

NIEM – National Information Exchange Model

NTAC – NIEM Technical Architecture Committee

OWL – Web Ontology Language

PDF – Portable Document Format

PMO – Program Management Office

RDF – Resource Description Framework

SSGT – Schema Subset Generation Tool

SVG – Scalable Vector Graphics

UML – Unified Modeling Language

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

URN – Uniform Resource Name

W3C – World Wide Web Consortium

WSDL – Web Services Description Language

XHTML – Extensible Hyper Text Markup Language

XMI – XML Metadata Interchange

NIEM Model Package Description (MPD) Specification

 I-2

XML – Extensible Markup Language

XSD – XML Schema Definition

XSL – Extensible Stylesheet Language

XSLT – Extensible Stylesheet Language Transformation

NIEM Model Package Description (MPD) Specification

 J-1

Appendix J: Glossary of Terms

The following terms are assumed to be defined in the context of NIEM.

artifact – A single file with a defined purpose or a set of files logically grouped for a defined

purpose. An MPD is a collection of related artifacts.

base schema set – A NIEM MPD artifact that is the set of all NIEM-conformant and external

non-conformant XML schemas that together specify an information exchange or information

model for an MPD. A base schema set may incorporate reference, subset, extension, and

exchange schemas, as well as external schemas from authoritative sources outside of NIEM.

Business Information Exchange Component (BIEC) – A NIEM-conformant XML schema

data component definition or declaration (for a type, element, attribute, or other XML construct)

reused, subsetted, extended, and/or created from NIEM that meets a particular recurring business

requirement for an information sharing enterprise.

constraint schema – A schema which adds additional constraints to NIEM-conformant

instances. A constraint schema or a constraint schema set validates additional constraints

imposed on an XML instance only after it is known to be NIEM-conformant (i.e., has been

validated by reference schemas, subset schemas, extension schemas, and/or exchange schemas).

Constraint schema validation is a second-pass validation that occurs independently of and after

conformance validation. A constraint schema need not validate constraints that are applied by

other schemas. See also constraint schema set.

constraint schema set – A set of related constraint schemas that work together, such as a

constraint schema set built by adding constraints to a schema subset. See also constraint

schema.

core update – An MPD that it applies changes to a given NIEM core. It is never used to replace

a NIEM core; instead, it is used to add new schemas, new data components, new code values,

etc. to a particular NIEM core. In some cases, a core update can make minor modifications to

existing core data components.

data component – An XML Schema type or attribute group definition; or an XML Schema

element or attribute declaration.

domain update – A MPD that contains a schema or set of schemas issued by one or more

domains that constitutes new content or an update to content that was previously included in a

NIEM release. A domain update may define and declare new versions of content from NIEM

releases or other published content. The issuing body vets each update before publishing, but the

update is not subject to review by other NIEM bodies. A domain update must be NIEM-

conformant, but otherwise it has fewer constraints on quality than does a NIEM release. Domain

update schemas contain proposed future changes to NIEM that have not been published in a

numbered release and have not been vetted by NIEM governance bodies (except by the domain

or domains involved). Domain updates are published to the NIEM Publication Area at

http://publication.niem.gov/ and available for immediate use within information exchanges.

Enterprise Information Exchange Model (EIEM) – An MPD that contains NIEM-conformant

schemas that define and declare data components to be consistently reused in the IEPDs of an

http://publication.niem.gov/v

NIEM Model Package Description (MPD) Specification

 J-2

enterprise. An EIEM is a collection of BIECs organized into a subset and one or more extension

schemas. Constraint schemas and non-NIEM-conformant external standards schemas with type

adapters are optional in an EIEM.

exchange schema – A NIEM-conformant schema which specifies a document in a particular

exchange.

extension schema – A NIEM-conformant schema which adds domain or application specific

content to the base NIEM model.

harmonization – Given a data model, harmonization is the process of reviewing its existing data

definitions and declarations; reviewing how it structures and represents data; integrating new

data components; and refactoring data components as necessary to remove (or reduce to the

maximum extent) semantic duplication and/or semantic overlap among all data structures and

definitions resulting in representational quality improvements.

IEP root element – The single top-level element in an IEP (instance). In the absence of any

other XML wrapping of an IEP, a root element declared in an exchange schema is an IEP

document element.

Information Exchange Package (IEP) – An XML document that is a correct instantiation of a

NIEM IEPD, and therefore, validates with the XML schemas of that IEPD.

Information Exchange Package Documentation (IEPD) – An MPD that contains NIEM-

conformant schemas that define one or more recurring XML data exchanges.

Information Sharing Enterprise – A group of organizations with business interactions that

agree to exchange information, often using multiple types of information exchanges. The

member organizations have similar business definitions for objects used in an information

exchange and can usually agree on their common BIEC names and definitions.

major release – A NIEM release in which the NIEM Core schema has changed since previous

releases. The first integer of the version number indicates the major release series; for example,

versions 1.0, 2.0, and 3.0 are different major releases.

micro release – A NIEM release in which neither the NIEM Core nor the domain schemas have

changed from the previous major or minor release, but one or more new schemas have been

added (without impact to the domain or Core schemas). A third digit greater than zero in the

version number indicates a micro release (for example, v2.1.1 – this release does not exist as of

this date).

minor release – A NIEM release in which the NIEM Core has not changed from previous

releases in the series, but at least one or more domain schemas have changed. A second digit

greater than zero in the version number indicates a minor release (for example, v2.1). Note also

that major v2.0 and minor v2.1 are in the same series (i.e., 2) and contain the same NIEM Core

schema.

Model Package Description (MPD) – A set of related W3C XML Schema documents and other

supporting files organized as one of the five classes of NIEM schema sets:

 • Release (major, minor, or micro).

NIEM Model Package Description (MPD) Specification

 J-3

 • Domain update (to a release).

 • Core update (to a release).

 • Information Exchange Package Documentation (IEPD).

 • Enterprise Information Exchange Model (EIEM).

An MPD is self-documenting and provides sufficient normative and non-normative information

to allow technical personnel to understand how to use or implement it. An MPD is packaged as

a ZIP [PK-ZIP] file.

MPD root directory – The top level file directory relative to all MPD artifacts and

subdirectories.

nature – An indication of the type of an MPD artifact. This further indicates how it should be

processed by software tools.

purpose – A property of an MPD artifact that indicates its usage or function. This determines

what to do with this artifact and/or how it should be processed by software tools.

reference schema – An XML Schema document that meets all of the following criteria:

• It is explicitly designated as a reference schema. This may be declared by an MPD catalog or

by a tool-specific mechanism outside the schema.

• It provides the broadest, most fundamental definitions of components in its namespace.

• It provides the authoritative definition of business semantics for components in its namespace.

• It is intended to serve as the basis for components in IEPD and EIEM schemas, including

subset schemas, constraint schemas, extension schemas, and exchange schemas.

• It satisfies all rules specified in the [NIEM-NDR] for reference schemas.

See also reference schema set.

reference schema set – A set of related reference schemas, such as a NIEM release. See also

reference schema.

release – A set of schemas published by the NIEM Program Management Office (PMO) at

http://release.niem.gov/niem/ and assigned a unique version number. Each schema defines data

components for use in NIEM information exchanges. Each release is independent of other

releases, although a schema may occur in multiple releases. A release is of high quality, and has

been vetted by NIEM governance bodies. A numbered release may be a major, minor, or micro

release.

schema coherence – A schema set is coherent when it has the following properties: (1) the

schema set does not refer to a schema outside the set (i.e., the set is closed), and (2) the set does

not include two different versions of the same component in an incompatible way.

schema subset (or subset schema set) – A NIEM-conformant set of subset schemas, derived

from a set of reference schemas, but which specifies instances that may consist of a portion of

the reference schema set. See also subset schema.

http://release.niem.gov/niem/

NIEM Model Package Description (MPD) Specification

 J-4

subset schema – An XML Schema document that meets all of the following criteria:

• It is explicitly designated as a subset schema. This may be declared by an MPD catalog or by a

tool-specific mechanism outside the schema.

• It has a target namespace previously defined by a reference schema. That is, it does not

provide original definitions and declarations for schema components, but instead provides an

alternate schema representation of components that are defined by a reference schema.

• It does not alter the business semantics of components in its namespace. The reference schema

defines these business semantics.

• It is intended to express the limited vocabulary necessary for an IEPD or EIEM and to support

XML Schema validation for an IEPD.

• It satisfies all rules specified in the Naming and Design Rules [NIEM-NDR] for subset

schemas.

See also schema subset.

wantlist – An XML document that represents a NIEM schema subset. A NIEM wantlist

identifies the data component requirements declared by the author of a subset; it does not

identify the data component dependencies required to reconstitute the complete subset. The

complete subset can be computed with the reference schema from which the subset was derived.

NIEM Model Package Description (MPD) Specification

 K-1

Appendix K: References

[FEA-DRM]: The Federal Enterprise Architecture Data Reference Model, Version 1.0, September
2004. Available from http://xml.gov/documents/completed/DRMv1.pdf
A more recent DRM Version 2.0, 17 November 2005 is available from

http://www.whitehouse.gov/omb/assets/egov_docs/DRM_2_0_Final.pdf

[GJXDM-IEPD]: GJXDM Information Exchange Package Documentation Guidelines, Version 1.1,
Global XML Structure Task Force (GXSTF), 2 March 2005. Available from
http://it.ojp.gov/documents/global_jxdm_IEPD_guidelines_v1_1.pdf

[ISO-Schematron]: Schema Definition Languages (DSDL) – Part 3: Rule-based validation –
Schematron, ISO/IEC 19757-3:2006(E), First edition, 1 June 2006. Available from
"http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_IS
O_IEC_19757-3_2006(E).zip"

[NIEM-BIEC]: Business Information Exchange Components (BIEC), Version 1.0, NIEM Technical
Architecture Committee (NTAC), March 2011. Available from
"http://reference.niem.gov/niem/guidance/business-information-
exchange-components/1.0/"

[NIEM-Conformance]: NIEM Conformance, Version 1.0, NIEM Technical Architecture
Committee (NTAC), 15 September 2008. Available from
http://reference.niem.gov/niem/specification/conformance/1.0/

[NIEM-ConOps]: NIEM Concept of Operations, Version 0.5, NIEM Program Management Office,
9 January 2007. Available from
http://reference.niem.gov/niem/guidance/concept-of-operations/

[NIEM-DomainUpdate]: Draft NIEM Domain Update Specification, Version 1.0, NIEM Technical
Architecture Committee (NTAC), 5 November 2010. Available from
http://reference.niem.gov/niem/specification/domain-update/1.0/

[NIEM-HLTA]: NIEM High-Level Tool Architecture, Version 1.1, NIEM Technical Architecture
Committee, 1 December 2008. Available from
"http://reference.niem.gov/niem/specification/high-level-tool-
architecture/1.1/"

[NIEM-HLVA]: NIEM High Level Version Architecture (HLVA), Version 1.0, NIEM Technical
Architecture Committee, 2008. Available from
"http://reference.niem.gov/niem/specification/high-level-version-
architecture/1.0/"

[NIEM-IEPD]: Requirements for a National Information Exchange Model (NIEM) Information
Exchange Package Documentation (IEPD) Specification, Version 2.1, June 2006. Available from
"http://reference.niem.gov/niem/guidance/iepd-requirements/2.1/"

http://xml.gov/documents/completed/DRMv1.pdf
http://www.whitehouse.gov/omb/assets/egov_docs/DRM_2_0_Final.pdf
http://it.ojp.gov/documents/global_jxdm_IEPD_guidelines_v1_1.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://reference.niem.gov/niem/guidance/business-information-exchange-components/1.0/
http://reference.niem.gov/niem/guidance/business-information-exchange-components/1.0/
http://reference.niem.gov/niem/specification/conformance/1.0/
http://reference.niem.gov/niem/guidance/concept-of-operations/
http://reference.niem.gov/niem/specification/domain-update/1.0/
http://reference.niem.gov/niem/specification/high-level-tool-architecture/1.1/
http://reference.niem.gov/niem/specification/high-level-tool-architecture/1.1/
http://reference.niem.gov/niem/specification/high-level-version-architecture/1.0/
http://reference.niem.gov/niem/specification/high-level-version-architecture/1.0/
http://reference.niem.gov/niem/guidance/iepd-requirements/2.1/

NIEM Model Package Description (MPD) Specification

 K-2

[NIEM-Implementation]: NIEM Implementation Guide, NIEM Program Management Office.
Available from
"https://www.niem.gov/program-managers/Pages/implementation-

guide.aspx"

[NIEM-Intro]: Introduction to the National Information Exchange Model (NIEM), Version 0.3,
NIEM Program Management Office, 12 February 2007. Available from
http://reference.niem.gov/niem/guidance/introduction/

[NIEM-NDR]: NIEM Naming and Design Rules (NDR), Version 1.3, NIEM Technical Architecture
Committee (NTAC), 31 October 2008. Available from
"http://reference.niem.gov/niem/specification/naming-and-design-
rules/1.3/"

[NIEM-UserGuide]: NIEM User Guide Volume 1, U.S. Department of Justice, Office of Justice
Programs, (date unknown). Available from
http://reference.niem.gov/niem/guidance/user-guide/vol1/

[RFC2119-KeyWords]: Bradner, S., Key words for use in RFCs to Indicate Requirement Levels,
IETF RFC 2119, March 1997. Available from http://www.ietf.org/rfc/rfc2119.txt

[RFC3986-URI]: Berners-Lee, T., et al., Uniform Resource Identifier (URI): Generic Syntax,
Request for Comments 3986, Network Working Group, January 2005. Available from
http://tools.ietf.org/html/rfc3986

[W3-AssocResourcesNS]: Associating Resources with Namespaces, TAG Finding, World Wide
Web Consortium, 25 June 2008. Available from
http://www.w3.org/2001/tag/doc/nsDocuments-2008-06-25/

[W3-CURIE-Syntax]: CURIE Syntax 1.0 – A syntax for expressing Compact URIs, Version 1.0,
W3C Candidate Recommendation, 16 January 2009. Available from
http://www.w3.org/TR/2010/NOTE-curie-20101216/

[W3-OWL]: OWL Web Ontology Language Reference, W3C Recommendation 10 February
2004. Available from http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[W3-RDF]: Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C
Recommendation 10 February 2004. Available from
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[W3-XML]: Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26
November 2008. Available from http://www.w3.org/TR/2008/REC-xml-20081126/

[W3-XML-InfoSet]: XML Information Set (Second Edition), W3C Recommendation 4 February
2004. Available from http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

[W3-XML-Namespaces]: Namespaces in XML (Second Edition), World Wide Web Consortium
16 August 2006. Available from
http://www.w3.org/TR/2006/REC-xml-names-20060816/

https://www.niem.gov/program-managers/Pages/implementation-guide.aspx
https://www.niem.gov/program-managers/Pages/implementation-guide.aspx
http://reference.niem.gov/niem/guidance/introduction/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/guidance/user-guide/vol1/
http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2010/NOTE-curie-20101216/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816

NIEM Model Package Description (MPD) Specification

 K-3

[W3-XML-SchemaDatatypes]: XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. Available from
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[W3-XML-SchemaStructures]: XML Schema Part 1: Structures Second Edition, W3C
Recommendation 28 October 2004. Available from
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[W3-XSLT]: XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 November 1999.
Available from http://www.w3.org/TR/1999/REC-xslt-19991116

[W3-XSLT2]: XSL Transformations (XSLT), Version 2.0, W3C Recommendation 23 January 2007.
Available from http://www.w3.org/TR/2007/REC-xslt20-20070123/

[PK-ZIP]: APPNOTE.TXT - .ZIP File Format Specification, Version: 6.3.2, Revised: 28 September
2007, Copyright (c) 1989 - 2007 PKWare Inc. Available from

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

	Change History
	Contents
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Audience

	2 Concepts and Terminology
	2.1 Key Words for Requirement Levels
	2.2 Character Case Sensitivity
	2.3 Artifacts
	2.4 Schema-Namespace Correspondence in NIEM
	2.5 Harmonization
	2.6 Validation
	2.7 Reference Schema
	2.8 Coherence of Schema Sets
	2.9 MPD Types
	2.9.1 NIEM Release
	2.9.2 Domain Update
	2.9.3 Core Update
	2.9.4 Information Exchange Package Documentation (IEPD)
	2.9.5 Enterprise Information Exchange Model (EIEM)

	2.10 Similarities and Differences of MPD Classes

	3 MPD XML Schema Artifacts
	3.1 Reference Schemas
	3.2 Subset Schemas
	3.2.1 Basic Subset Concepts
	3.2.2 Subset Namespaces
	3.2.3 Omitting Schemas in Subsets
	3.2.4 Multiple Subsets in a Single IEPD or EIEM

	3.3 Extension Schemas
	3.4 Exchange Schemas
	3.5 Base Schema Set
	3.6 Constraint Schemas
	3.7 Classes of MPDs vs. Classes of Schemas
	3.8 Sample XML Instances

	4 MPD Documentation Artifacts
	4.1 Catalog
	4.2 Metadata Concepts
	4.2.1 Version Numbering Scheme
	4.2.2 URI Scheme for MPDs
	4.2.3 URI Scheme for MPD Artifacts
	4.2.3.1 Compact URIs (CURIEs)
	4.2.3.2 MPD Artifact URIs Are Not NIEM Namespaces

	4.2.4 Artifact Vocabularies: Nature and Purpose
	4.2.5 Wantlists
	4.2.6 MPD Artifact Lineage

	4.3 Change Log
	4.3.1 NIEM Releases, Core Updates, and Domain Updates
	4.3.2 IEPDs and EIEMs

	4.4 Master Document
	4.4.1 Master Document Content

	5 Optional MPD Artifacts
	6 Directory Organization, Packaging, Other Criteria
	6.1 MPD File Name Syntax
	6.2 Artifact Links to Other Resources
	6.3 Duplication of Artifacts
	6.4 Non-normative Guidance for Directories
	Appendix A: MPD Catalog Schema
	Appendix B: MPD Catalog Data Dictionary
	Appendix C: Sample MPD Catalog Instance
	Appendix D: Sample XSLT for an MPD Catalog Index
	Appendix E: Browser Display of MPD Catalog
	Appendix F: MPD Artifacts
	Appendix G: MPD Lexicon (Nature and Purpose)
	Nature and Purpose Hierarchies

	Appendix H: Rule Summary
	Appendix I: Acronyms and Abbreviations
	Appendix J: Glossary of Terms
	Appendix K: References

